Tree planting is an important way to restore degraded areas, however, the quality of the plant residue added to the soil influences the organic matter decomposition rate and, consequently, carbon availability. Carbon mineralization curves over time make it possible to understand the decomposition of organic residues and improve soil management. Nonlinear regression models have been used to describe the dynamics of carbon mineralization over time, as they summarize the information contained in the data in just a few parameters with practical interpretations. Thus, this study aimed at evaluating the nonlinear models Cabrera, Juma and Stanford & Smith to describe the soil carbon mineralization in the following plantations: Secondary forest, Acacia auriculiformis, Mimosa caesalpiniifolia and Pasture, obtained from the first to the twentieth week. All the computational part involved in the adjustments and analyses was performed using the R statistical software. The most suitable regression model was selected for the description of soil carbon mineralization for each vegetation cover based on the following criteria: adjusted coefficient of determination (R2adj), residual standard deviation (RSD) and Akaike information criterion (AIC). For Acacia, the Cabrera model was indicated as the best to describe this treatment. For Forest and Pasture, the Juma model had the best fit, and the Stanford & Smith model best described the Mimosa treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.