Operating satellites in Very Low Earth Orbit (VLEO) benefits the already expanding New Space industry in applications including Earth Observation and beyond. However, long-term operations at such low altitudes require propulsion systems to compensate for the large aerodynamic drag forces. When using conventional propulsion systems, the amount of storable propellant limits the maximum mission lifetime. The latter can be avoided by employing Atmosphere-Breathing Electric Propulsion (ABEP) system, which collects the residual atmospheric particles and uses them as propellant for an electric thruster. Thus, the requirement of on-board propellant storage can ideally be nullified. At the Institute of Space Systems (IRS) of the University of Stuttgart, an intake, and a RF Helicon-based Plasma Thruster (IPT) for ABEP system are developed within the Horizons 2020 funded DISCOVERER project. In order to assess possible future use cases, this paper proposes and analyzes several novel ABEP based mission scenarios. Beginning with technology demonstration mission in VLEO, more complex mission scenarios are derived and discussed in detail. These include, amongst others, orbit maintenance around Mars as well as refuelling and space tug missions. The results show that the ABEP system is not only able to compensate drag for orbit maintenance but also capable of performing orbital maneuvers and collect propellant for applications such as Space Tug and Refuelling. Thus, showing a multitude of different future mission applications.
The space industry is growing and space data are becoming accessible to businesses that were previously unthinkable. Constellations of small satellites in Very Low Earth Orbit (VLEO) have created a gap that is allowing small and medium-sized space companies to gain momentum by developing new strategies and technologies. According to Euroconsult forecasting, the NewSpace market will grow from $12.6 billion to $42.8 billion in the next decade (2019–2028). Despite the study’s limitations and the uncertainties of the small satellite market, the results obtained in this exploratory research suggest that the Low-Cost Carriers (LCC) market, an already established market in the aviation industry, and the growing market of EO small satellite constellations in VLEO have similar behaviours. This behaviour shows that the evolution of EO smallsat constellations in VLEO is comparable with the evolution of the LCC airlines. In addition, the result also identifies a set of competitive factors that allow the researchers to observe similar strategic behaviour in both markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.