Context Varenicline, an effective smoking cessation medication, functions as an α4β2 nicotinic acetylcholine receptor partial agonist. It indirectly affects the dopaminergic reward system by reducing withdrawal symptoms during abstinence and by decreasing the reinforcement received from nicotine while smoking. We hypothesize that varenicline would have a third mechanism to blunt responses to smoking cues in the reward-related ventral striatum and medial orbitofrontal cortex and would be associated with a reduction in smoking cue–elicited craving. Design A laboratory model of conditioned responding and arterial spin-labeled perfusion functional magnetic resonance imaging, a biomarker of regional brain activity, was used to test our hypothesis. Perfusion functional magnetic resonance imaging is quantitative and stable across time, facilitating the measurement of medication-induced neural modifications in the brain in response to a challenge (smoking cue exposure) and in the brain in the resting condition (without provocation). Smokers were imaged during rest and during smoking cue exposure before and after a 3-week randomized placebo-controlled medication regimen. Subjects were nonabstinent to explicitly examine the effects of varenicline on cue reactivity independent of withdrawal. Setting Center for the Study of Addictions, University of Pennsylvania, Philadelphia. Subjects Subjects were nicotine-dependent smokers who responded to advertisements placed on local radio and Listservs to participate in a medication-related research study that specifically stated “this is not a Quit Smoking Study” and “smokers may be contemplating but not currently considering quitting.” Results Prerandomization smoking cues vs nonsmoking cues activated the ventral striatum and medial orbitofrontal cortex (t=3.77) and elicited subjective reports of craving (P=.006). Craving reports correlated with increased activity in the posterior cingulate (t=4.11). Administration of varenicline diminished smoking cue– elicited ventral striatum and medial orbitofrontal cortex responses (t values from −3.75 to −5.63) and reduced self-reported smoking cue–elicited craving, whereas placebo-treated subjects exhibited responses similar to those observed prior to randomization. Varenicline-induced activation of lateral orbitofrontal cortex in the brain at rest (t=5.63) predicted blunting of smoking cue responses in the medial orbitofrontal cortex (r=−0.74). Conclusions Varenicline’s reciprocal actions in the reward-activated medial orbitofrontal cortex and in the reward-evaluating lateral orbitofrontal cortex underlie a diminished smoking cue response, revealing a distinctive new action that likely contributes to its clinical efficacy.
Previously we demonstrated profound effects of dopamine transporter (DAT) SLC6A3 genotype on limbic responses to smoking cues (SCs). Probands carrying at least one copy of the 9-repeat allele (9-repeat carriers) had greater neural responses to SCs in the anatomically interconnected rostral ventral striatum/medial orbitofrontal cortex (VS/mOFC), compared with homozygotes for the 10-repeat allele (10/10-repeats). To test the reliability of the initial findings, we examined perfusion functional magnetic resonance images acquired during SC exposure in a new cohort of smokers (N = 26) who were genotyped for the SLC6A3 polymorphism. In smokers overall, activity was enhanced in the VS/mOFC (t = 3.77). Contrasts between allelic groups revealed that 9-repeat carriers had a greater response to SCs in the VS (t = 3.12) and mOFC (t = 3.19). In separate groups, 9-repeat carriers showed increased activity in the VS (t = 5.47) and mOFC (T = 4.96), while no increases were observed in 10-repeats. Subjective reports of craving correlated with increased activity in reward-related structures including the extended amygdala, insula and post-central gyrus, and decreased activity in the dorsolateral prefrontal cortex, and were DAT-genotype dependent (r = 0.63–0.96). In secondary analyses, we found that The Fagerström Test for Nicotine Dependence scores correlated with enhanced SC-induced perfusion in 10/10-repeats in the insula, mOFC, medial temporal and superior frontal gyri (r = 0.50–0.82), while correlations were absent in 9-repeat carriers. Despite heterogeneity introduced by a host of factors, including variance in other genes involved in smoking behavior, we confirm that DAT genotype predicts the direction and location of neural responses to SCs.
Marijuana users consistently demonstrate impairments in attention, executive function and response inhibition, which resemble deficits seen in attention deficit hyperactivity disorder (ADHD). We hypothesized that targeting the cognitive deficits associated with chronic marijuana use through ADHD medications may help identify a therapeutic agent for marijuana dependence.Thirteen subjects participated in an 11-week open label study to determine the feasibility, safety and tolerability of atomoxetine for individuals seeking treatment for marijuana dependence. The Time-Line Follow-Back measured marijuana use 90 days prior to study entry (p-TLFB) and weekly during the study (s-TLFB) along with weekly qualitative urine drug screen (UDS). For the eight subjects who completed the trial, the TLFB data showed a trend toward reduction in use with an increase in percent days abstinent (p=0.06). Analysis of weekly UDSs did not confirm the TLFB trend with 94% of all possible UDSs positive for THC through out the study.Marijuana dependent subjects taking atomoxetine experienced an inordinate number of gastrointestinal (GI) adverse events. Overall, 10 of 13 subjects (77%) experienced a mild to moderate GI adverse event defined as nausea, vomiting, dyspepsia, and loose stools. Atomoxetine is of limited utility in the treatment of cannabis dependence and is associated with clinically significant GI adverse events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.