Compósitos de polipropileno com 10, 20 e 30% em volume de fibra de coco verde foram obtidos em câmara de mistura Haake, tendo como variáveis a temperatura de processamento e a velocidade de cisalhamento. O módulo de flexão e as características morfológicas dos diferentes compósitos obtidos foram avaliados e comparados com o polipropileno puro. Foi observado que a temperatura de 170 °C, a velocidade do rotor de 60rpm e o teor de fibra de coco verde de 30% forneceram o melhor desempenho quanto à flexão. Essas observações foram comprovadas pela análise da morfologia.
A series of polypropylene (PP)-green coconut fiber (GCF) composites were prepared by melt mixing and their properties studied in the molten state using an advanced nonlinear harmonic testing technique, and in the solid state using standard mechanical testing and scanning electron microscopy (SEM). The effect of fiber loading as well as the role of maleated polypropylene as compatibilizing agent was investigated. PP-GCF composites are heterogeneous materials that, in the molten state, are found to exhibit essentially a nonlinear viscoelastic character, in contrast with the pure PP, which has a linear viscoelastic region up to 50 -60% strain. Complex modulus increases with GCF content but in such a manner that the observed reinforcement is at best of hydrodynamic origin, without any specific chemical interaction occurring between the polymer matrix and the fibers. The addition of maleated polypropylene improves the wetting of fibers by the molten polymer but the effect is so small that specific chemical reactions could hardly be considered as occurring. Flexural modulus data confirm the reinforcing effects of the fiber and an improvement is noted when some maleated polypropylene is used, with an optimum level of around 1% (or the PP content). SEM microphotographs clearly show that maleated polypropylene imparts a better wetting of GC fibers by PP, but chemical interactions are unlikely to occur between the polymer and GCF.
Resumo: Compósitos de polipropileno com 10, 20 e 30% em volume de fibra de coco verde foram obtidos em câmara de mistura Haake, tendo como variáveis a temperatura de processamento e a velocidade de cisalhamento. O módulo de flexão e as características morfológicas dos diferentes compósitos obtidos foram avaliados e comparados com o polipropileno puro. Foi observado que a temperatura de 170 °C, a velocidade do rotor de 60rpm e o teor de fibra de coco verde de 30% forneceram o melhor desempenho quanto à flexão. Essas observações foram comprovadas pela análise da morfologia. Palavras-chave: Compósitos, polipropileno, fibra de coco verde. Abstract: Polypropylene composites containing 10, 20 and 30% in volume of green coconut fiber were prepared in a Haake chamber at various processing temperatures and shear rates. The flexural modulus and morphological characteristics of the composites were evaluated and compared with pure polypropylene. Optimization experiments indicated that a temperature of 170 °C, shear rate of 60rpm and green coconut fiber content of 30% showed the best properties by flexural modulus. These observations were confirmed by a morphology analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.