Purpose/Objectives
To develop a patient-specific “big data” clinical decision tool to predict pneumonitis in Stage I non-small cell lung cancer (NSCLC) patients after stereotactic body radiation therapy (SBRT).
Materials/Methods
61 features were recorded for 201 consecutive patients with Stage I NSCLC treated with SBRT, in whom 8 (4.0%) developed radiation pneumonitis (RP). Pneumonitis thresholds were found for each feature individually using decision stumps. The performance of three different algorithms (Decision Trees, Random Forests, RUSBoost) was evaluated. Learning curves were developed and the training error analyzed and compared to the testing error in order to evaluate the factors needed to obtain a cross-validated error smaller than 0.1. These included the addition of new features, increasing the complexity of the algorithm and enlarging the sample size and number of events.
Results
In the univariate analysis, the most important feature selected was the diffusion capacity of the lung for carbon monoxide (DLCO adj%). On multivariate analysis, the three most important features selected were the dose to 15 cc of the heart, dose to 4 cc of the trachea or bronchus, and race. Higher accuracy could be achieved if the RUSBoost algorithm was used with regularization. To predict radiation pneumonitis within an error smaller than 10%, we estimate that a sample size of 800 patients is required.
Conclusion
Clinically relevant thresholds that put patients at risk of developing radiation pneumonitis were determined in a cohort of 201 stage I NSCLC patients treated with SBRT. The consistency of these thresholds can provide radiation oncologists with an estimate of their reliability and may inform treatment planning and patient counseling. The accuracy of the classification is limited by the number of patients in the study and not by the features gathered or the complexity of the algorithm.
Background and purposeChest wall toxicity is observed after stereotactic body radiation therapy (SBRT) for peripherally located lung tumors. We utilize machine learning algorithms to identify toxicity predictors to develop dose–volume constraints.Materials and methodsTwenty‐five patient, tumor, and dosimetric features were recorded for 197 consecutive patients with Stage I NSCLC treated with SBRT, 11 of whom (5.6%) developed CTCAEv4 grade ≥2 chest wall pain. Decision tree modeling was used to determine chest wall syndrome (CWS) thresholds for individual features. Significant features were determined using independent multivariate methods. These methods incorporate out‐of‐bag estimation using Random forests (RF) and bootstrapping (100 iterations) using decision trees.ResultsUnivariate analysis identified rib dose to 1 cc < 4000 cGy (P = 0.01), chest wall dose to 30 cc < 1900 cGy (P = 0.035), rib Dmax < 5100 cGy (P = 0.05) and lung dose to 1000 cc < 70 cGy (P = 0.039) to be statistically significant thresholds for avoiding CWS. Subsequent multivariate analysis confirmed the importance of rib dose to 1 cc, chest wall dose to 30 cc, and rib Dmax. Using learning‐curve experiments, the dataset proved to be self‐consistent and provides a realistic model for CWS analysis.ConclusionsUsing machine learning algorithms in this first of its kind study, we identify robust features and cutoffs predictive for the rare clinical event of CWS. Additional data in planned subsequent multicenter studies will help increase the accuracy of multivariate analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.