The protein Grb2 plays a central role in signalling by receptor protein-tyrosine kinases, where its SH2 domain binds to the receptor and its two SH3 domains link to effectors. One target effector is Sos, so Grb2 links receptor protein-tyrosine kinases with the Ras signalling pathway. The SH3 domains can also couple to other signalling proteins, including Vav, c-Abl and dynamin. We have identified several bands in glial and medulloblastoma tumours that are recognized by Grb2 but these did not correspond to any known protein. Here we use recombinant Grb2 to isolate a complementary DNA called Gab1 (for Grb2-associated binder-1). Gab1 shares amino-acid homology and several structural features with IRS-1 (insulin-receptor substrate-1; refs 6,7), is a substrate of the EGF and insulin receptors, and can act as a docking protein for several SH2-containing proteins. Over-expression of Gab1 enhances cell growth and results in transformation. We conclude that Gab1 is a new protein in EGF and insulin receptor signalling which could integrate signals from different systems.
Nerve growth factor (NGF) prevents apoptosis through stimulation of the TrkA receptor protein tyrosine kinase. The downstream activation of phosphatidylinositol 3-kinase (PI 3-kinase) is essential for the inhibition of apoptosis, although this enzyme does not bind to and is not directly activated by TrkA. We have found that the addition of NGF to PC-12 cells resulted in the phosphorylation of the Grb2-associated binder-1 (Gab1) docking protein and induced the association of several SH2 domain-containing proteins, including PI 3-kinase. A substantial fraction of the total cellular PI 3-kinase activity was associated with Gab1. PC-12 cells that overexpressed Gab1 show a decreased requirement for the amount of NGF necessary to inhibit apoptosis. The expression of a Gab1 mutant that lacked the binding sites for PI 3-kinase enhanced apoptosis and diminished the protective effect of NGF. Hence, Gab1 has a major role in connecting TrkA with PI 3-kinase activation and for the promotion of cell survival by NGF.
The most frequently found alteration of the epidermal growth factor receptor (EGFR) in human tumors is a deletion of exons 2-7. This receptor, termed EGFRvIII, can transform NIH 3T3 cells, and the frequent expression of this variant implies that it confers a selective advantage upon tumor cells in vivo. Although EGFRvIII is a constitutively activated tyrosine kinase, there is no increase in Ras⅐GTP levels and low levels of mitogenactivated protein kinase activity in NIH 3T3 cells expressing this variant. We investigated whether phosphatidylinositol (PI) 3-kinase was an effector in transformation by the EGFRvIII. High levels of PI 3-kinase activity were constitutively present in EGFRvIIItransformed cells and were dependent upon the kinase activity of the receptor. While mitogen-activated protein kinase activity was quickly down-regulated to basal levels after 12 h of continuous EGFR activation, there was a 3-fold increase in PI 3-kinase activity in cells expressing normal EGFR and an 8-fold increase in cells expressing EGFRvIII after 48 h. This increased activity may reflect enhanced binding to EGFRvIII and the presence of novel PI 3-kinase isoforms. Treatment with the PI 3-kinase inhibitors wortmannin and LY294002 blocked both anchorage-independent growth and growth in low serum media and also resulted in morphological reversion of EGFRvIII-transformed cells. These results support an essential role for PI 3-kinase in transformation by this EGFR variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.