The mature surface layer (S-layer) protein SbsC of Bacillus stearothermophilus ATCC 12980 comprises amino acids 31-1099 and self-assembles into an oblique lattice type which functions as an adhesion site for a cell-associated highmolecular-mass exoamylase. To elucidate the structure-function relationship of distinct segments of SbsC, three N-and seven C-terminal truncations were produced in a heterologous expression system, isolated, purified and their properties compared with those of the recombinant mature S-layer protein rSbsC 31-1099 . With the various truncated forms it could be demonstrated that the N-terminal part (aa 31-257) is responsible for anchoring the S-layer subunits via a distinct type of secondary cell wall polymer to the rigid cell wall layer, but this positively charged segment is not required for the self-assembly of SbsC, nor for generating the oblique lattice structure. If present, the N-terminal part leads to the formation of in vitro double-layer self-assembly products. Affinity studies further showed that the N-terminal part includes an exoamylase-binding site. Interestingly, the N-terminal part carries two sequences of 6 and 7 aa (AKAALD and KAAYEAA) that were also identified on the amylase-binding protein AbpA of Streptococcus gordonii. In contrast to the self-assembling N-terminal truncation rSbsC 258-1099 , two further N-terminal truncations (rSbsC 343-1099 , rSbsC 447-1099 ) and three C-terminal truncations (rSbsC 31-713 , rSbsC 31-844 , rSbsC 31-860 ) had lost the ability to self-assemble and stayed in the water-soluble state. Studies with the self-assembling C-terminal truncations rSbsC 31-880 , rSbsC 31-900 and rSbsC 31-920 revealed that the C-terminal 219 aa can be deleted without interfering with the self-assembly process, while the C-terminal 179 aa are not required for the formation of the oblique lattice structure.
The cell surface of Bacillus stearothermophilus ATCC 12980 is completely covered with an oblique S-layer lattice. To investigate sequence identities and a common structure-function relationship in S-layer proteins of different B. stearothermophilus wild-type strains, the nucleotide sequence encoding the S-layer protein SbsC of B. stearothermophilus ATCC 12980 was determined by PCR techniques. The entire sbsC sequence showed an ORF of 3297 bp predicted to encode a protein of 1099 aa with a theoretical molecular mass of 115 409 Da and an isoelectric point of 573. Primer extension analysis suggested the existence of two promoter regions. Amino acid sequence comparison between SbsC and SbsA, a previously characterized S-layer protein of B. stearothermophilus PV72/p6 which assembles into a hexagonally ordered lattice, revealed an identical secretion signal peptide, 85 % identity for the N-terminal regions (aa 31-270) which do not carry any S-layer homologous motifs, but only 21 % identity for the rest of the sequences. Affinity studies demonstrated that the N-terminal part of SbsC is necessary for recognition of a secondary cell wall polymer. This was in accordance with results obtained in a previous study for SbsA, thus confirming a common functional principle for the N-terminal parts of both S-layer proteins. The sbsC coding region cloned into the pET3a vector without its own upstream region, the signal sequence and the 3' transcriptional terminator led to stable expression in Escherichia coli.
Two Bacillus stearothermophilus wild-type strains were investigated regarding a common recognition and binding mechanism between the S-layer protein and the underlying cell envelope layer. The S-layer protein from B. stearothermophilusPV72/p6 has a molecular weight of 130,000 and assembles into a hexagonally ordered lattice. The S-layer from B. stearothermophilus ATCC 12980 shows oblique lattice symmetry and is composed of subunits with a molecular weight of 122,000. Immunoblotting, peptide mapping, N-terminal sequencing of the whole S-layer protein from B. stearothermophilus ATCC 12980 and of proteolytic cleavage fragments, and comparison with the S-layer protein from B. stearothermophilus PV72/p6 revealed that the two S-layer proteins have identical N-terminal regions but no other extended structurally homologous domains. In contrast to the heterogeneity observed for the S-layer proteins, the secondary cell wall polymer isolated from peptidoglycan-containing sacculi of the different strains showed identical chemical compositions and comparable molecular weights. The S-layer proteins could bind and recrystallize into the appropriate lattice type on native peptidoglycan-containing sacculi from both organisms but not on those extracted with hydrofluoric acid, leading to peptidoglycan of the A1γ chemotype. Affinity studies showed that only proteolytic cleavage fragments possessing the complete N terminus of the mature S-layer proteins recognized native peptidoglycan-containing sacculi as binding sites or could associate with the isolated secondary cell wall polymer, while proteolytic cleavage fragments missing the N-terminal region remained unbound. From the results obtained in this study, it can be concluded that S-layer proteins from B. stearothermophilus wild-type strains possess an identical N-terminal region which is responsible for anchoring the S-layer subunits to a secondary cell wall polymer of identical chemical composition.
The cell surface of the surface layer (S-layer)-carrying strain of Bacillus stearothermophilus ATCC 12980 is completely covered with an oblique lattice composed of the S-layer protein SbsC. In the S-layer-deficient strain, the S-layer gene sbsC was still present but was interrupted by a novel type of insertion sequence (IS) element designated ISBst12. motifs were identified at the N-terminal part of the putative transposase. As revealed by Southern blotting, ISBst12 was present in multiple copies in the Slayer-deficient strain as well as in the S-layer-carrying strain. Northern blotting indicated that S-layer gene expression is already inhibited at the transcriptional level, since no sbsC-specific transcript could be identified in the S-layer-deficient strain. By using PCR, ISBst12 was also detected in B. stearothermophilus PV72/p6, in its oxygen-induced strain variant PV72/p2 and in the S-layer-deficient strain PV72/T5.
A protease of a molecular mass of approximately 30kDa was isolated and purified from the haloalkaliphilic archaeon Natronomonas (formerly Natronobacterium) pharaonis. The enzyme hydrolyzed synthetic peptides, preferentially at the carboxyl terminus of phenylalanine or leucine, as well as large proteins. Hydrolysis occurred over the range of pH from 6 to 12, with an optimum at pH 10. The temperature optimum was 61 degrees C. The enzyme was nearly equally active over the range of salt concentration from 0.5 to 4M (NaCl or KCl). A strong cross-reaction with a polyclonal antiserum against human chymotrypsin was observed. Enzymatic activity was inhibited by typical serine protease inhibitors. There was significant homology between N-terminal and internal sequences from autolytic fragments and the sequence of bovine chymotrypsinogen B; the overall amino acid composition was similar to that of vertebrate chymotrypsinogens. Evidence for a zymogen-like processing of the protease was obtained. Cell extracts from other halobacteria exhibited similar proteolytic activity and immunoreactivity. The data suggested a widespread distribution of a chymotrypsinogen B-like protease among halo- and haloalkaliphilic Archaea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.