The observed phenotype matches very closely that reported in patients by Azari et al. (IOVS 2006) and in the Bbs1-M390R knock-in mouse model, and expands it to the characterization of important ERG response characteristics that provide insight in the pathogenesis of retinopathy in these patients. Our findings confirm the consistent pathogenicity of the BBS1 M390R mutation.
The human X chromosome contains ~1600 genes, about 15% of which have been associated with a specific genetic condition, mainly affecting males. Blue cone monochromacy (BCM) is an X-linked condition caused by a loss-of-function of both the OPN1LW and OPN1MW opsin genes. The cone opsin gene cluster is composed of 2–9 paralogs with 99.8% sequence homology and is susceptible to deletions, duplications, and mutations. Current diagnostic tests employ polymerase chain reaction (PCR)-based technologies; however, alterations remain undetermined in 10% of patients. Furthermore, carrier testing in females is limited or unavailable. High-resolution X chromosome-targeted CGH microarray was applied to test for rearrangements in males with BCM and female carriers from three unrelated families. Pathogenic alterations were revealed in all probands, characterized by sequencing of the breakpoint junctions and quantitative real-time PCR. In two families, we identified a novel founder mutation that consisted of a complex 3-kb deletion that embraced the cis-regulatory locus control region and insertion of an additional aberrant OPN1MW gene. The application of high-resolution X-chromosome microarray in clinical diagnosis brings significant advantages in detection of small aberrations that are beyond the resolution of clinically available aCGH analysis and which can improve molecular diagnosis of the known conditions and unravel previously unrecognized X-linked diseases.
ABSTRACT.Purpose: The cytotoxic effects of oxidative stress, which play an important role in ocular diseases, are well known. In this study, we investigated the effect of non-lethal doses of oxidative stress on various cell functions, namely cell viability, cell attachment and cell migration in a widely used retinal pigment epithelium (RPE) cell line (ARPE-19). Methods: A single exposure to various concentrations of hydrogen peroxide (H 2 O 2 ) was used to establish a dose response for H 2 O 2 -induced cell death. Other cellular responses, such as changes in cell attachment and migration, were monitored after exposure to increasing doses. Finally, the effects of preconditioning cells with increasing non-lethal doses of H 2 O 2 , with and without a subsequent exposure to lethal doses of H 2 O 2 , were determined. Results: The optimum dose for inducing cell death in ARPE-19 cells was between 900 and 1000 lm H 2 O 2 . Preconditioning the cells with 1, 10 and 50 lm of H 2 O 2 provided a dose-dependent protection against cell death induced by a lethal dose (900-1000 lm) of H 2 O 2 . Preconditioning with higher doses caused cells to become more susceptible to the cytotoxic effects of the lethal dose. Although H 2 O 2 increased cell attachment in lower doses, it induced a dose-dependent inhibition of cell attachment to the substrate in higher doses. H 2 O 2 did not affect cell migration in sub-lethal doses. Conclusion: Preconditioning RPE cells with limited exposure to non-lethal oxidative stress confers significant protection against subsequent H 2 O 2 -induced cell death. It also affects cell attachment in a dose-specific manner. This finding may help in understanding the pathogenesis of diseases in which oxidative stress plays an important role and in determining the suitability of certain treatment strategies, in particular RPE transplantation in the treatment of age-related macular degeneration.
NR2E3-associated recessive disease in humans is historically defined by congenital night blinding retinopathy, characterized by an initial increase in short-wavelength (S)-cone sensitivity and progressive loss of rod and cone function. The retinal degeneration 7 (rd7) murine model, harboring a recessive mutation in the mouse ortholog of NR2E3, has been a well-studied disease model and recently evaluated as a therapeutic model for NR2E3-associated retinal degenerations. This study aims to draw parallels between human and mouse NR2E3-related disease through examination of spectral domain optical coherence tomography (SD-OCT) imaging between different stage of human disease and its murine counterpart. We propose that SD-OCT is a useful non-invasive diagnostic tool to compare human clinical dystrophy presentation with that of the rd7 mouse and make inference that may be of therapeutically relevance. Additionally, a longitudinal assessment of rd7 disease progression, utilizing available clinical data from our patients as well as extensive retrospective analysis of visual acuity data from published cases of human NR2E3-related disease, was curated to identify further valuable correlates between human and mouse Nr2e3 disease. Results of this study validate the slow progression of NR2E3-associated disease in humans and the rd7 mice and identify SD-OCT characteristics in patients at or near the vascular arcades that correlate well with the whorls and rosettes that are seen also in the rd7 mouse and point to imaging features that appear to be associated with better preserved S-cone mediated retinal function. The correlation of histological findings between rd7 mice and human imaging provides a solid foundation for diagnostic use of pathophysiological and prognostic information to further define characteristics and a relevant timeline for therapeutic intervention in the field of NR2E3-associated retinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.