A sphere of a ferrogel is exposed to a homogeneous magnetic field. In accordance to theoretical predictions, it gets elongated along the field lines. The time-dependence of the elastic shear modulus causes the elongation to increase with time analogously to mechanic creep experiments, and the rapid excitation causes the sphere to vibrate. Both phenomena can be well described by a damped harmonic oscillator model. By comparing the elongation along the field with the contraction perpendicular to it, we can calculate Poisson's ratio of the gel. The magnitude of the elongation is compared with the theoretical predictions for elastic spheres in homogeneous fields.
Surface-modified carbon nanotubes (CNTs) have become well-established filler materials for polymer nanocomposites. However, in immiscible polymer blends, the CNT-coating is selective toward the more compatible phase, which suppresses their homogeneous distribution and limits harnessing the full potential of the filler. In this study, we show that multiwalled CNTs with a patchy polystyrene/poly(methyl methacrylate) (PS/PMMA) corona disperse equally well in both phases of an incompatible PS/PMMA polymer blend. Unlike polymer-grafted CNTs with a uniform corona, the patchy CNTs are able to adjust their corona structure to the blend phases by selective swelling/collapse of respective miscible/immiscible surface patches. Importantly, the high interfacial activity of patchy CNTs further causes a significant decrease in PMMA droplet size with increasing filler content. The combined effect of compatibilization and homogeneous distribution makes patchy CNTs interesting materials for polymer blend nanocomposites, where next to the compatibilization, a homogeneous filler distribution is important to gain the desired materials property (e.g., reinforcement).
Summary: For the first time, thermoreversible ferrogels (FG) by physical gelation of ferrofluids have been described. Finavestan A80B paraffin oil in a concentration range of the gelator KRATON G‐1650 with Cgelator = 3–10 wt.‐%, was used to obtain stable and homogeneous FGs. TEM micrographs revealed that the magnetite particles are preferably located in the ‘free’ paraffin phase between micellar domains of the gelator. So, the magnetite nanoparticles make visible a ‘negative’ picture of the structure of the micellar domains of the gel, which is observed in the pure gel as a ‘positive’ image. The mean diameter of the polystyrene cores is $\overline d$ = 17 nm, and that of the magnetite particles is $\overline d$ = 7 nm.
Thermoreversible hydroferrogels (FGs) have been prepared via gelation of aqueous maghemite ferrofluids (FFs) using the triblock copolymer Pluronic P123 as gelator. In the investigated concentration range of 28-42 wt % P123, long-term stable homogeneous FGs can be prepared from FFs with a maximum maghemite content of 14 wt %. For higher FF concentrations up to 29 wt %, however, homogeneous FGs were formed only for gelator contents up to ca. 33 wt %. A combination of rheology and μ-DSC was applied as an alternative method to construct the P123 phase diagram, without the need for visual methods or scattering techniques. Using this procedure, we could show that maghemite nanoparticles can be effectively templated by the cubic and hexagonal P123 mesophases in a concentration range of 33-38 wt % P123 and FF concentrations up to 14 wt %, respectively. Most importantly, the phase behavior and the corresponding phase-transition temperatures of P123 were not significantly altered. As a result, the FGs show a reversible temperature-triggered transition from a cubic hard gel to a hexagonal gel, which is linked with a softening of the gel. Furthermore, this concept can be applied to template cobalt ferrite nanoparticle effectively, too. Magnetization experiments revealed that the superparamagnetic behavior of the maghemite nanoparticles, which show a Néel type relaxation, is not altered in the corresponding FGs. In contrast, FGs based on blocked cobalt ferrite nanoparticles show a hysteretic behavior, which indicates a strong mechanical coupling between the P123 mesophase and the magnetic nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.