The involvement of Mts1(S100A4), a small Ca 2+ -binding protein in tumor progression and metastasis had been demonstrated. However, the mechanism by which mts1(S100A4) promoted metastasis had not been identi®ed. Here we demonstrated that Mts1(S100A4) had signi®cant stimulatory eect on the angiogenesis. We detected high incidence of hemangiomas ± benign tumors of vascular origin in aged transgenic mice ubiquitously expressing the mts1(S100A4) gene. Furthermore, the serum level of the Mts1(S100A4) protein increased with ageing. Tumors developed in Mts1-transgenic mice revealed an enhanced vascular density. We showed that an oligomeric, but not a dimeric form of the Mts1(S100A4) protein was capable of enhancing the endothelial cell motility in vitro and stimulate the corneal neovascularization in vivo. An oligomeric fraction of the protein was detected in the conditioned media as well as in human serum. The data obtained allowed us to conclude that mts1(S100A4) might induce tumor progression via stimulation of angiogenesis. Oncogene (2001) 20, 4685 ± 4695.
Neuronal differentiation and axonal growth are controlled by a variety of factors including neurotrophic factors, extracellular matrix components, and cell adhesion molecules. Here we describe a novel and very efficient neuritogenic factor, the metastasis-related Mts1 protein, belonging to the S100 protein family. The oligomeric but not the dimeric form of Mts1 strongly induces differentiation of cultured hippocampal neurons. A mutant with a single Y75F amino acid substitution, which stabilizes the dimeric form of Mts1, is unable to promote neurite extension. Disulfide bonds do not play an essential role in the Mts1 neuritogenic activity. Mts1-stimulated neurite outgrowth involves activation of phospholipase C and protein kinase C, depends on the intracellular level of Ca 2؉ , and requires activation of the extracellular signal-regulated kinases (ERKs) 1 and 2.
The epithelial-mesenchymal transition (EMT) contributes to cancer metastasis. Two ZEB family members, ZEB1 and ZEB2(SIP1), inhibit transcription of the E-cadherin gene and induce EMT in vitro. However, their relevance to human cancer is insufficiently studied. Here, we performed a comparative study of SIP1 and ZEB1 proteins in cancer cell lines and in one form of human malignancy, carcinoma of the bladder. Whereas ZEB1 protein was expressed in all E-cadherin-negative carcinoma cell lines, being in part responsible for the high motility of bladder cancer cells, SIP1 was hardly ever detectable in carcinoma cells in culture. However, SIP1 represented an independent factor of poor prognosis (P ؍ 0.005) in a series of bladder cancer specimens obtained from patients treated with radiotherapy. In contrast, ZEB1 was rarely expressed in tumor tissues; and E-cadherin status did not correlate with the patients' survival. SIP1 protected cells from UV-and cisplatin-induced apoptosis in vitro but had no effect on the level of DNA damage. The anti-apoptotic effect of SIP1 was independent of either cell cycle arrest or loss of cell-cell adhesion and was associated with reduced phosphorylation of ATM/ATR targets in UV-treated cells. The prognostic value of SIP1 and its role in DNA damage response establish a link between genetic instability and metastasis and suggest a potential importance for this protein as a therapeutic target. In addition, we conclude that the nature of an EMT pathway rather than the deregulation of E-cadherin per se is critical for the progression of the disease and patients' survival. E pithelial mesenchymal transition (EMT) is a genetic program controlling cell migration during embryonic development and in wound healing (1, 2). Aberrant activation of EMT programs occurs in cells of epithelial tumors and contributes to the formation of cancer stem cells and metastasis (1-4). EMT is characterized by the loss of epithelial and the acquisition of mesenchymal features. EMT programs are controlled by several master regulators including TWIST, SNAIL (SNAI1 and SNAI2), and ZEB (ZEB1/␦EF1/TCF8 and SIP1/ZEB2) protein family members. These proteins act downstream in EMTinducing signal transduction pathways activated by growth factors, integrin engagement and hypoxia (1-3). Their expression is tightly regulated at the posttranscriptional level. Recent reports highlighted the importance of miR-200 microRNA family in the regulation of ZEB1 and SIP1 protein expression (5). ZEB proteins bind proximal E-boxes within the E-cadherin gene (cdh1) promoter and repress transcription by recruiting corepressor complexes (6). Likewise, they directly repress numerous genes encoding components of the epithelial junctional complex and cell polarity factors (7,8). The relevance of ZEB proteins to tumor progression has been studied in several forms of human cancer. Expression of ZEB1 correlated with the aggressive phenotype in various histological types of endometrial carcinoma and was detected in sarcomatous compartment of endometri...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.