Rationale
The polyprenols are involved in some essential biosynthetic pathways and serve as ubiquitous components of cellular membranes, so their fingerprinting in natural samples is of great interest. Previous studies indicate that due to the high hydrophobicity of polyprenols their direct analysis by mass spectrometry with soft ionization techniques may be difficult and require preliminary off‐line derivatization. Hence, a method for rapid and sensitive screening of polyprenols is required.
Methods
A combination of thin‐film chemical deposition and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOFMS) was used for analysis of the polyprenol profile of Abies sibirica L. extract. Polyprenol‐based monolayers were formed at the interphase of aqueous barium acetate solution, supplemented with 2,5‐dihydroxybenzoic acid, and an n‐hexane solution of polyprenols directly on a MALDI target plate.
Results
Peaks corresponding to [M − H + Ba]+ ions were observed in the MALDI‐TOF mass spectra of polyprenols. A total of nine polyprenol homologues were identified with a polyprenol of 16 isoprene units dominating. The limit of detection was established at the level of 6 pg. Possible mechanisms of formation of [M − H + Ba]+ ions of polyprenols were discussed.
Conclusions
The proposed approach can be suitable for high‐throughput screening of polyprenols in biological samples of different origin due to easy sample preparation and high sensitivity.
Пленарные доклады 1Казанский институт биохимии и биофизики -обособленное структурное подразделение ФИЦ КазНЦ РАН, Казань, Россия 2Казанский (Приволжский) федеральный университет, Казань, Россия, 3Федеральное государственное бюджетное учреждение науки Институт биохимии и физиологии растений и микроорганизмов РАН, Саратов, Россия, 4Институт органической и физической химии им. А.Е. Арбузова -обособленное структурное подразделение ФИЦ КазНЦ РАН, Казань, Россия
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.