Abstract-On endothelial cells, thrombin binds to thrombomodulin (TM), an integral membrane-bound glycoprotein, and to protease-activated receptors (PARs). Thrombin binding to TM modulates endothelial cell and smooth muscle cell proliferation mediated through PAR1. We studied the phosphorylation and nuclear translocation of extracellular signal-regulated kinases (ERKs) 1 and 2 in human umbilical vein endothelial cells activated by thrombin. Thrombin and thrombin receptor-activating peptide (TRAP)-induced DNA synthesis were significantly inhibited by PD98059, an inhibitor of ERK phosphorylation. Immunoblots of phosphorylated ERKs (pERKs) and immunocytochemical studies of pERK localization revealed differences in the signal generated by thrombin and TRAP. After a short activation (15 minutes), the phosphorylation and the intracellular localization of pERKs were the same with the 2 agonists. After 4 hours, however, pERKs were visualized in the nuclei of thrombin-activated cells but barely detectable in TRAP-activated cells. Moreover, after 4 hours, the pERKs were visualized in the nuclei of cells stimulated by TRAP in the presence of a thrombin mutant that bound to TM, whereas they were around the nuclei in cells stimulated by thrombin in the presence of a monoclonal antibody preventing thrombin binding to TM. The results demonstrate that ERKs are involved in human umbilical vein endothelial cell DNA synthesis mediated by PAR agonists, that the duration of pERK nuclear retention is in inverse ratio to the mitogenic response, and that in addition to its role in the regulation of blood coagulation, TM acts as a thrombin receptor that modulates the duration of pERK nuclear retention and cell proliferation in response to thrombin. T hrombin is a multifunctional serine protease generated at sites of vascular injury. Thrombin plays a key role in blood coagulation and thrombotic disorders. It acts as the central enzyme of the coagulation cascade by cleaving fibrinogen into fibrin and favoring its own production by activating several coagulation factors by limited proteolysis. Thrombin also regulates its own formation after binding to thrombomodulin (TM), an integral membrane-bound glycoprotein expressed on endothelial cells. TM acts as a cofactor of thrombin to activate protein C, a serine protease ensuring proteolytic inactivation of 2 coagulation factors, factor Va and factor VIIIa. Thrombin also interacts with a variety of cells mediating inflammatory and proliferative responses to vascular injury. 1 For all protein and cellular interactions, thrombin has a recognition site and a catalytic active site. By the former, called the anion-binding exosite (ABE1), thrombin binds to specific negatively charged sequences. By the catalytic site, thrombin exerts its proteolytic activity. 2 On vascular endothelial cells, thrombin ABE1 binds to TM. This binding occurs through the epithelial growth factor (EGF)-like domains 4 and 5 of TM. 3 Thrombin ABE1 also binds to the typical heptahelical thrombin receptor, the first member of pr...
SummaryThrombin interacts with its receptor and thrombomodulin on endothelial cells. We evaluated the respective roles of these two proteins on human umbilical vein endothelial cell (HUVEC) growth by comparing thrombin, S195A (a mutant thrombin in which the serine of the charge stabilizing system had been replaced by alanine), and the receptor activating peptide (TRAP). Thrombin and TRAP induced DNA synthesis (half maximal cell proliferation with 5 nM and 25 μM, respectively), whereas S195A thrombin was inactive, inferring that growth is mediated through the thrombin receptor. Surprisingly, cells stimulated by TRAP exhibited a maximal proliferation twice greater than that obtained with thrombin. Combination of thrombin and TRAP resulted in a mitogenic response higher than by thrombin alone, but lower than by TRAP alone. The role of thrombomodulin was evaluated by adding an anti-thrombomodulin antibody, which prevents formation of the thrombin-thrombomodulin complex. Antibody did not interfere with cell proliferation induced by TRAP, but enhanced that induced by thrombin. We conclude that formation of the thrombin-thrombomodulin complex restrains HUVEC proliferation mediated through the thrombin receptor.
An autoantibody, developed by a patient with severe and recurrent arterial thrombosis, was characterized to be directed against the anion- binding exosite of thrombin, and inhibited all thrombin interactions requiring this secondary binding site without interfering with the catalytic site. The effect of the antibody was studied on thrombin interactions with platelets and endothelial cells from human umbilical veins (HUVEC). The autoantibody specifically and concentration- dependently inhibited alpha-thrombin-induced platelet activation and prostacyclin (PGI2) synthesis from HUVEC. It had no effect when gamma- thrombin or the thrombin receptor activation peptide SFLLR were the inducers. The effect of the antibody on protein C activation has been studied. The antibody blocked the thrombin-thrombomodulin activation of protein C. The inhibition of the activation was maximal with a low concentration of thrombomodulin. The fact that the autoantibody inhibited concentration-dependent alpha-thrombin-induced platelet and endothelial cell functions emphasizes the crucial role of the anion- binding exosite of thrombin to activate its receptor. In regard to the pathology, the antibody inhibited two vascular processes implicated in thrombin-antithrombotic functions, PGI2 secretion, and protein C activation, which could be implicated in this arterial thrombotic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.