Research in the basic biology of ageing is increasingly identifying mechanisms and modifiers of ageing in short-lived organisms such as worms and mice. The ultimate goal of such work is to improve human health, particularly in the growing segment of the population surviving into old age. Thus far, few interventions have robustly transcended species boundaries in the laboratory, suggesting that changes in approach are needed to avoid costly failures in translational human research. In this review, we discuss both well-established and alternative model organisms for ageing research and outline how research in nonhuman primates is sorely needed, first, to translate findings from short-lived organisms to humans, and second, to understand key aspects of ageing that are unique to primate biology. We focus on rhesus macaques as a particularly promising model organism for ageing research owing to their social and physiological similarity to humans as well as the existence of key resources that have been developed for this species. As a case study, we compare gene regulatory signatures of ageing in the peripheral immune system between humans and rhesus macaques from a free-ranging study population in Cayo Santiago. We show that both mRNA expression and DNA methylation signatures of immune ageing are broadly shared between macaques and humans, indicating strong conservation of the trajectory of ageing in the immune system. We conclude with a review of key issues in the biology of ageing for which macaques and other nonhuman primates may uniquely contribute valuable insights, including the effects of social gradients on health and ageing. We anticipate that continuing research in rhesus macaques and other nonhuman primates will play a critical role in conjunction with the model organism and human biodemographic research in ultimately improving translational outcomes and extending health and longevity in our ageing population. This article is part of the theme issue ‘Evolution of the primate ageing process’.
Across mammals, increased body size is positively associated with lifespan. However, within species, this relationship is inverted. This is well illustrated in dogs (Canis familiaris), where larger dogs exhibit accelerated life trajectories: growing faster and dying younger than smaller dogs. Similarly, some age-associated traits (e.g., growth rate and physiological pace of aging) exhibit accelerated trajectories in larger breeds. Yet, it is unknown whether cognitive performance also demonstrates an accelerated life course trajectory in larger dogs. Here, we measured cognitive development and aging in a cross-sectional study of over 4000 dogs from 66 breeds using nine memory and decision-making tasks performed by citizen scientists as part of the Dognition project. Specifically, we tested whether cognitive traits follow a compressed (accelerated) trajectory in larger dogs, or the same trajectory for all breeds, which would result in limited cognitive decline in larger breeds. We found that all breeds, regardless of size or lifespan, tended to follow the same quadratic trajectory of cognitive aging-with a period of cognitive development in early life and decline in later life. Taken together, our results suggest that cognitive performance follows similar age-related trajectories across dog breeds, despite remarkable variation in developmental rates and lifespan.
Weather-related disasters are increasing in frequency and severity, leaving survivors to cope with ensuing mental, financial, and physical hardships. This adversity can exacerbate existing morbidities, trigger new ones, and increase the risk of mortality—features that are also characteristic of advanced age—inviting the hypothesis that extreme weather events may accelerate aging. To test this idea, we examined the impact of Hurricane Maria and its aftermath on immune cell gene expression in large, age-matched, cross-sectional samples from free-ranging rhesus macaques (Macaca mulatta) living on an isolated island. A cross section of macaques was sampled 1 to 4 y before (n = 435) and 1 y after (n = 108) the hurricane. Hurricane Maria was significantly associated with differential expression of 4% of immune-cell-expressed genes, and these effects were correlated with age-associated alterations in gene expression. We further found that individuals exposed to the hurricane had a gene expression profile that was, on average, 1.96 y older than individuals that were not—roughly equivalent to an increase in 7 to 8 y of a human life. Living through an intense hurricane and its aftermath was associated with expression of key immune genes, dysregulated proteostasis networks, and greater expression of inflammatory immune cell-specific marker genes. Together, our findings illuminate potential mechanisms through which the adversity unleashed by extreme weather and potentially other natural disasters might become biologically embedded, accelerate age-related molecular immune phenotypes, and ultimately contribute to earlier onset of disease and death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.