Beckwith-Wiedemann syndrome (BWS) is characterized by cancer predisposition, overgrowth and highly variable association of macroglossia, abdominal wall defects, nephrourological anomalies, nevus flammeus, ear malformations, hypoglycemia, hemihyperplasia, and organomegaly. BWS molecular defects, causing alteration of expression or activity of the genes regulated by two imprinting centres (IC) in the 11p15 chromosomal region, are also heterogeneous. In this paper we define (epi)genotype-phenotype correlations in molecularly confirmed BWS patients. The characteristics of 318 BWS patients with proven molecular defect were compared among the main four molecular subclasses: IC2 loss of methylation (IC2-LoM, n = 190), IC1 gain of methylation (IC1-GoM, n = 31), chromosome 11p15 paternal uniparental disomy (UPD, n = 87), and cyclin-dependent kinase inhibitor 1C gene (CDKN1C) variants (n = 10). A characteristic growth pattern was found in each group; neonatal macrosomia was almost constant in IC1-GoM, postnatal overgrowth in IC2-LoM, and hemihyperplasia more common in UPD (Po0.001). Exomphalos was more common in IC2/CDKN1C patients (Po0.001). Renal defects were typical of UPD/IC1 patients, uretheral malformations of IC1-GoM cases (Po0.001). Ear anomalies and nevus flammeus were associated with IC2/CDKN1C genotype (Po0.001). Macroglossia was less common among UPD patients (Po0.001). Wilms' tumor was associated with IC1-GoM or UPD and never observed in IC2-LoM patients (Po0.001). Hepatoblastoma occurred only in UPD cases. Cancer risk was lower in IC2/CDKN1C, intermediate in UPD, and very high in IC1 cases (P = 0.009).In conclusion, (epi)genotype-phenotype correlations define four different phenotypic BWS profiles with some degree of clinical overlap. These observations impact clinical care allowing to move toward (epi) genotype-based follow-up and cancer screening.
Pitt‐Hopkins syndrome (PTHS) is a neurodevelopmental disorder characterized by intellectual disability, specific facial features, and marked autonomic nervous system dysfunction, especially with disturbances of regulating respiration and intestinal mobility. It is caused by variants in the transcription factor TCF4. Heterogeneity in the clinical and molecular diagnostic criteria and care practices has prompted a group of international experts to establish guidelines for diagnostics and care. For issues, for which there was limited information available in international literature, we collaborated with national support groups and the participants of a syndrome specific international conference to obtain further information. Here, we discuss the resultant consensus, including the clinical definition of PTHS and a molecular diagnostic pathway. Recommendations for managing particular health problems such as dysregulated respiration are provided. We emphasize the need for integration of care for physical and behavioral issues. The recommendations as presented here will need to be evaluated for improvements to allow for continued optimization of diagnostics and care.
There has been one previous report of a cohort of patients with variants in Chromodomain Helicase DNA-binding 3 ( CHD3 ), now recognized as Snijders Blok-Campeau syndrome. However, with only three previously-reported patients with variants outside the ATPase/helicase domain, it was unclear if variants outside of this domain caused a clinically similar phenotype. We have analyzed 24 new patients with CHD3 variants, including nine outside the ATPase/helicase domain. All patients were detected with unbiased molecular genetic methods. There is not a significant difference in the clinical or facial features of patients with variants in or outside this domain. These additional patients further expand the clinical and molecular data associated with CHD3 variants. Importantly we conclude that there is not a significant difference in the phenotypic features of patients with various molecular disruptions, including whole gene deletions and duplications, and missense variants outside the ATPase/helicase domain. This data will aid both clinical geneticists and molecular geneticists in the diagnosis of this emerging syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.