We investigated the anti-SARS-CoV-2 post-vaccine response through serum and salivary antibodies, serum antibody neutralizing activity and cellular immune response in samples from health care workers who were immunized with two doses of an inactivated virus-based vaccine (CoronaVac) who had or did not have COVID-19 previously. IgA and IgG antibodies directed at the spike protein were analysed in samples of saliva and/or serum by ELISA and/or chemiluminescence assays; the neutralizing activity of serum antibodies against reference strain B, Gamma and Delta SARS-CoV-2 variants were evaluated using a virus neutralization test and SARS-CoV-2 reactive interferon-gamma T-cell were analysed by flow cytometry. CoronaVac was able to induce serum and salivary IgG anti-spike antibodies and IFN-γ producing T cells in most individuals who had recovered from COVID-19 and/or were vaccinated. Virus neutralizing activity was observed against the ancestral strain, with a reduced response against the variants. Vaccinated individuals who had previous COVID-19 presented higher responses than vaccinated individuals for all variables analysed. Our study provides evidence that the CoronaVac vaccine was able to induce the production of specific serum and saliva antibodies, serum virus neutralizing activity and cellular immune response, which were increased in previously COVID-19-infected individuals compared to uninfected individuals.
Due to its leading role in fighting infections, the human immune system has been the focus of many studies in the context of Coronavirus disease 2019 (COVID-19). In a worldwide effort, the scientific community has transitioned from reporting about the effects of the novel coronavirus on the human body in the early days of the pandemic to exploring the body’s many immunopathological and immunoprotecting properties that have improved disease treatment and enabled the development of vaccines. The aim of this review is to explain what happens to the immune system after recovery from COVID-19 and/or vaccination against SARS-CoV-2, the virus that causes the disease. We detail the way in which the immune system responds to a SARS-CoV-2 infection, including innate and adaptive measures. Then, we describe the role of vaccination, the main types of COVID-19 vaccines and how they protect us. Further, we explain the reason why immunity after COVID-19 infection plus a vaccination appears to induce a stronger response compared with virus exposure alone. Additionally, this review reports some correlates of protection from SARS-CoV-2 infection. In conclusion, we reinforce that vaccination is safe and important in achieving herd immunity.
Lung cancer is the most frequent type of cancer worldwide. In Brazil, only 14% of the patients diagnosed with lung cancer survived 5years in the last decades. Although improvements in the therapeutic approach, it is relevant to identify new chemotherapeutic agents. In this framework, ruthenium metal compounds emerge as a promising alternative to platinum-based compounds once they displayed lower cytotoxicity and more selectivity for tumor cells. The present study aimed to evaluate the antitumor potential of innovative ruthenium(II) complex, [Ru(pipe)(dppb)(bipy)]PF (PIPE) on A549 cells, which is derived from non-small cell lung cancer. Results demonstrated that PIPE effectively reduced the viability and proliferation rate of A549 cells. When PIPE was used at 9μM there was increase in G0/G1 cell population with concomitant reduction in frequency of cells in S-phase, indicating cell cycle arrest in G1/S transition. Antiproliferative activity of PIPE was associated to its ability of reducing cyclin D1 expression and ERK phosphorylation levels. Cytotoxic activity of PIPE on A549 cells was observed when PIPE was used at 18μM, which was associated to its ability of inducing apoptosis by intrinsic pathway. Taken together, the data demonstrated that PIPE is a promising antitumor agent and further in vivo studies should be performed.
In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS: Cellular immunity was assessed by intracellular detection of IFN-g in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS: We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-g. CONCLUSIONS: Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.