During the continuous casting process, alloys may be more susceptible to crack initiation under some conditions due to lower ductility. A Ti–Nb microalloyed steel is subjected to in situ melted hot tensile tests to evaluate its hot ductility behavior. The ductility is examined at different strain rates and temperatures. The samples are heated with an induction coil to the melting temperature in a vacuum atmosphere. Afterward, they are cooled to the desired test temperatures. Hot tensile tests are conducted by a thermomechanical simulator with strain rates varying from 10−5 to 10−2 s−1. The results show a ductility minimum around 800 °C for the standard strain rate of 10−3 s−1 and a significant influence of the changes in strain rate in the behavior of the alloy for all the tested temperatures. The fracture surfaces are compared for 700, 800, and 900 °C at 10−4, 10−3, and 10−2 s−1, as well as the microstructure. Computer simulations are done for the determination of the transformation temperatures, Scheil–Gulliver solidification simulation, and analysis of the precipitation kinetics during the tests. The results from simulations are discussed in comparison with the ones seen experimentally.
Cracking during the continuous casting process is undesirable and continuous work is being carried out to find further improvements and understand the mechanisms that lead to failure. Investigations on the hot ductility behavior of a continuously cast low alloyed steel using different holding times before straining were done in the present work. Samples were heated to melting temperature in a vacuum atmosphere and then cooled to one of the three test temperatures chosen: 750, 850, and 900 °C. When the desired temperature was reached, the sample was isothermally held for either 10, 90, 300, or 3600 s before the tensile test started, with a strain rate of 10−3 s−1. The reduction of area was measured, SEM images of the fractured surfaces were taken plus LOM images for the analysis of the microstructure. The results show that there was no significant change in the ductility at any of the temperatures until 300 s, with a change in behavior at 3600 s. This was further confirmed with the images and precipitation kinetics simulations. The results are described and compared.
The effects of the combined addition of B and Ti, as well as the influence of different strain rates on the hot ductility behavior of low carbon, continuously cast, microalloyed steels were investigated in this work. Tensile tests, microstructure analyses, and thermokinetic simulations were performed with in situ melted samples. Furthermore, prior austenite grain evaluations were carried out for the two different microalloyed steels. Increasing the strain rate brought improvements to the ductility, which was more significant in the steel with the leanest composition. The steel containing more B and Ti presented a better hot ductility behavior under all conditions tested. The main causes for the improvements rely on the precipitation behavior and the austenite–ferrite phase transformation. The preferential formation of TiN instead of fine BN and AlN was seen to be beneficial to the ductility, as well as the absence of MnS. Grain boundary segregation of free B that did not form BN retarded the ferrite formation, avoiding the brittleness brought by the thin ferrite films at the austenite grain boundaries. Furthermore, it was revealed that for the steels in question, the prior austenite grains have less influence on the hot ductility behavior than the precipitates and ferrite formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.