In this paper studies on sound absorption of the thermoplastic composites on the basis of waste natural fibers are presented. Cotton fibers and cellulose ultra-short and ultra-fine fibers obtained from flax fibers following enzymatic and additional mechanical treatment were used as the components of polylactide composites, and their influence on sound absorption behavior was investigated. The composites were obtained from a pressing process of fibrous multilayer structures. The sound absorption properties of three types of composites were compared: composites reinforced by cotton fibers, composites reinforced by cellulose ultra-short and ultra-fine fibers, and composites reinforced by cotton fibers and cellulose ultra-short and ultra-fine fibers. The role of cellulose ultra-short and ultra-fine fibers in changing the sound absorption properties of composites was determined. It has previously been shown that using natural fibers with a thermoplastic polymer results in increased sound absorption. The best improvement of sound absorption can be obtained by combining cotton fibers and cellulose ultra-short and ultra-fine fibers, especially nanofibers, as a reinforcement.
The quest for sound-absorbing materials that are not only environmentally friendly, but also sustainable is the foremost reason for natural fibre-acoustic materials. Bark cloth is a natural non-woven fabric that is largely produced from Ficus trees. An exploratory investigation of bark cloth a non-woven material and its reinforcement in epoxy polymer composites has been fabricated and investigated for the sound absorption properties so as to find the most suitable applications and also to see whether bark cloth can be used in some applications in place of man-made fibres. Three types of material species were investigated with their respective composites. The fibre morphology showed bark cloth to be a porous fabric that showed promising sound absorption properties at higher frequencies. The sound absorption results of four-layer material selections of Ficus natalensis, Ficus brachypoda and Antiaris toxicaria bark cloth showed sound absorption coefficient of 0.7; 0.71 and 0.91 at f > 6400 Hz, respectively. The bark cloth reinforced laminar epoxy composites had reduced sound absorption coefficients, which ranged from 0.1 to 0.35, which was attributed to decreased porosity and vibration in the bark cloth fibre network.
In this paper, the clothes made of synthetic and natural fibres were tested. The characteristics of selected physical parameters such as temperature, electrical resistance, thermal resistance of fabrics used for tested clothes have been presented. The electrostatical charge and temperature distribution of clothes were investigated on human body. The temperature distribution and the coefficient of heat transmission were measured by a new thermovision method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.