DNA barcodes provide a reliable and efficient solution to resolving cryptic species complexes and accelerate species discoveries. The superfamily Ceraphronoidea (Hymenoptera) is a group of parasitoid wasps for which a barcoding approach could be of great help, if it were not for the very poor results. The inability to obtain barcodes for the majority of treated ceraphronoids halts progress on the taxonomy of this hyperdiverse parasitoid group. We here present a working protocol for the barcoding of ceraphronoid wasps which yields a first-time over 90% success rate.
Despite their ecological and economic importance, hymenopteran parasitoids are severely understudied. Even in countries with a long taxonomic history such as Germany, dating back to the 18th century and including prolific figures like Christian Gottfired Nees von Esenbeck and Otto Schmiedeknecht, those species-rich groups are seldom the subject of comprehensive research efforts, leaving their true diversity unknown. This is often due to their small size of a few millimetres on average, leading to difficulties in their identification and examination. The chalcidoid family Pteromalidae is no exception to this neglect. So far, 735 species have been reported from Germany. Estimating the diversity of this group is not possible, but it has to be assumed that many more species are still to be discovered in Germany.
With this study, we improve the knowledge on pteromalid diversity and present new records of 17 genera and 41 species, previously unknown to occur in Germany. We also match and describe previously unknown sexes of two species, based on DNA barcode data. The results of this study were generated as part of the German Barcode of Life Project. The newly-recorded species are illustrated and notes on the biology and distribution are given. The ecological significance of Pteromalidae and potential value as indicators for nature conservation efforts are briefly discussed.
Spalangiopelta is a small genus of chalcid wasps that has received little attention despite the widespread distribution of its extant species. The fossil record of the genus is restricted to a single species from Miocene Dominican amber. We describe two new fossil species, Spalangiopelta darlingi sp. n. and Spalangiopelta semialba sp. n. from Baltic amber. The species can be placed within the extant genus Spalangiopelta based on the distinctly raised hind margin of the mesopleuron. 3D models reconstructed from µCT data were utilized to assist in the descriptions. Furthermore, we provide a key for the females of all currently known Spalangiopelta species. The phylogenetic placement of the fossils within the genus is analyzed using parsimony analysis based on morphological characters. Phylogenetic and functional relevance of two wing characters, admarginal setae and the hyaline break, are discussed. The newly described Baltic amber fossils significantly extend the minimum age of Spalangiopelta to the Upper Eocene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.