As a result of an increasingly automatized and digitized industry, processes are becoming more complex. Augmented Reality has shown considerable potential in assisting workers with complex tasks by enhancing user understanding and experience with spatial information. However, the acceptance and integration of AR into industrial processes is still limited due to the lack of established methods and tedious integration efforts. Meanwhile, deep neural networks have achieved remarkable results in computer vision tasks and bear great prospects to enrich Augmented Reality applications . In this paper, we propose an Augmented-Reality-based human assistance system to assist workers in complex manual tasks where we incorporate deep neural networks for computer vision tasks. More specifically, we combine Augmented Reality with object and action detectors to make workflows more intuitive and flexible. To evaluate our system in terms of user acceptance and efficiency, we conducted several user studies. We found a significant reduction in time to task completion in untrained workers and a decrease in error rate. Furthermore, we investigated the users learning curve with our assistance system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.