Nectaries in leaves of Gentianaceae have been poorly studied. The present study aims to describe the distribution, anatomy, and ecological aspects of extrafloral nectaries (EFNs) of three Calolisianthus species and in particular the ultrastructure of EFNs in Calolisianthus speciosus during leaf development, discussing its unusual structure. Leaves of Calolisianthus species were fixed and processed by the usual methods for studies using light, scanning microscopy and transmission electron microscopy (TEM). Ion chromatography was used to analyze the nectar exudates of C. speciosus. The distribution patterns of nectar secretion units were analysed by ANOVA and t-tests. Two EFNs that can be seen macroscopically were observed at the bases of C. speciosus and C. pendulus leaves. Such large nectaries are absent there in C. amplissimus. Another similarly large EFN is observed at the apex of each leaf in all species. The EFNs at the base of the young leaves in C. speciosus are visited by ants during the rainy season. EFNs are formed by several nectar secretory units (nectarioles) that are present throughout the leaves. Each nectariole is formed by rosette cells with a central channel from which the nectar is released. Channels of old C. speciosus and C. pendulus EFNs were obstructed by fungi. TEM of EFNs in young leaves showed cytoplasms with secretion, small vacuoles, mitochondria, cell wall ingrowth, and plasmodesmata. TEM of EFNs in old leaves demonstrated dictyosomes, plastids, mitochondria, segments of endoplasmatic reticulum, and lipid droplets. The nectar contains sucrose, glucose and fructose.
This work aims to characterise the morphology and anatomy of roots, stems and leaves of Calolisianthus species (Gentianaceae – Helieae) to assist in the taxonomy and understanding of some adaptive responses to high luminosity, prolonged water deficit and nutritional stress in their environment. Samples of Calolisianthus speciosus and C. pendulus were collected in campo rupestre (rocky land) and samples of C. amplissimus were collected in cerrado (savanna) areas in southeastern Brazil. The roots have a cortex with Arum-type arbuscular mycorrhizae. The three species have winged and square stems and in Calolisianthus amplissimus the stem is hollow. Calolisianthus pendulus and C. speciosus have a pair of conspicuous extrafloral nectaries at the leaf base, which are absent in C. amplissimus. Calolisianthus pendulus has a dorsiventral mesophyll and a round leaf margin with parenchymatic cells. Calolisianthus amplissimus has a homogeneous mesophyll and a leaf margin with collenchyma. Calolisianthus speciosus leaves have a homogeneous mesophyll and a margin with sclerenchyma and collenchyma. Our results demonstrate that some anatomical characters are useful for the identification of Calolisianthus species and might be used to elucidate evolutionary relationships among Calolisianthus and their adaptive responses.
As espécies vegetais de Cerrado sensu stricto apresentam estratégias adaptativas às condições edáficas e climáticas de altos investimentos em fotoassimilados, nutrientes e água para sua estruturação. A simbiose entre fungos e raízes de plantas é uma importante adaptação radicular que auxilia as plantas na absorção de nutrientes e água do solo, sendo determinantes para a sobrevivência no Cerrado. Com o objetivo de estudar fungos micorrízicos arbusculares (FMAs) e fungos endofíticos do tipo dark septate (DSEFs) nas raízes de algumas espécies arbóreas e herbáceas, nativas do Cerrado sensu stricto, foram testados diferentes métodos para melhor observação das estruturas fúngicas em simbiose. O melhor método de clarificação foi observado quando as raízes foram autoclavadas a 121 °C em KOH 2 %, por 20 min, e com a subseqüente transferência para solução nova de KOH 2 %, por 24 h, em temperatura ambiente. Este procedimento foi repetido e, em seguida, essas amostras foram imersas em H2O2 2 % por 2 h. Os arbúsculos foram observados com maiores detalhes após a inclusão em resina, seccionamento e coloração com azul-de-toluidina. Todas as espécies avaliadas encontravam-se colonizadas por FMAs, e apenas em Xylopia aromatica não se observaram os DSEFs. As espécies herbáceas apresentaram maiores freqüências de colonização micorrízica do que as arbóreas. O caráter generalista dos FMAs e DSEFs observado nas espécies vegetais do Cerrado sensu stricto sugere a importância dessas simbioses como mecanismo adaptativo às condições de Cerrado.
Stryphnodendron adstringens is a common Cerrado tree that possesses extrafloral nectaries (EFNs) on its leaves, which are located at the base and apex of the rachis and along the secondary veins. The position of EFNs and their nectar production can be affected by defense strategies because plant organs possess different values and herbivory vulnerability. Here we aimed to elucidate anatomy, histochemistry, nectar composition and EFN number on leaves of S. adstringens in the light of the optimal defense hypothesis. We found a convergence on anatomy and histochemical characterization because the three studied types of EFNs have epidermis, secretory parenchyma and vascular tissue, showing phenolic compounds and polysaccharides in the secretory parenchyma cells. The nectar contained glucose, fructose and sucrose, which attract ants of the Camponotus and Cephalotes genus. We found differences in the number of EFNs along the secondary veins and in the nectar composition between EFNs located at the base and apex of the rachis of the leaf. The number of EFNs on the secondary veins increases from the base to the apex, suggesting a strategy to induce ant patrolling over the entire leaf region. EFNs at the base secreted more nectar, which should be related to the protection of the leaf base, which is the part most vulnerable to herbivore attack and the most valued organ. We concluded that EFNs of S. adstringens are anti-herbivore defenses whose pattern matches the predictions of the optimal defense hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.