Fertilization is a central event in sexual reproduction, and understanding its molecular mechanisms has both basic and applicative biological importance. Recent studies have uncovered the molecules that mediate this process in a variety of organisms, making it intriguing to consider conservation and evolution of the mechanisms of sexual reproduction across phyla. The social amoeba Dictyostelium discoideum undergoes sexual maturation and forms gametes under dark and humid conditions. It exhibits three mating types, type-I, -II, and -III, for the heterothallic mating system. Based on proteome analyses of the gamete membranes, we detected expression of two homologs of the plant fertilization protein HAP2-GCS1. When their coding genes were disrupted in type-I and type-II strains, sexual potency was completely lost, whereas disruption in the type-III strain did not affect mating behavior, suggesting that the latter acts as female in complex organisms. Our results demonstrate the highly conserved function of HAP2-GCS1 in gamete interactions and suggest the presence of additional allo-recognition mechanisms in D. discoideum gametes.
Sex promotes the recombination and reassortment of genetic material and is prevalent across eukaryotes. In social amoebae sex involves a promiscuous mixing of cytoplasm before zygotes consume the majority of cells.We report here the first genomewide characterisation of meiotic progeny in Dictyostelium discoideum. We find that recombination occurs at high frequency in pairwise crosses between all three mating types, despite the absence of the SPO11 enzyme that is normally required to initiate crossover formation. In crosses involving three strains, transient fusions involving more than two gametes frequently lead to triparental inheritance, with recombined nuclear haplotypes inherited from two parents and the mitochondrial genome from a third. Cells that do not contribute genetically to the Dictyostelium zygote nucleus thereby have a stake in the next haploid generation. We suggest that this lateral transfer helps to enforce cooperation in this confictual system.
bSexual reproduction is essential for the maintenance of species in a wide variety of multicellular organisms, and even unicellular organisms that normally proliferate asexually possess a sexual cycle because of its contribution to increased genetic diversity. Information concerning the molecules involved in fertilization is accumulating for many species of the metazoan, plant, and fungal lineages, and the evolutionary consideration of sexual reproduction systems is now an interesting issue. Macrocyst formation in the social amoeba Dictyostelium discoideum is a sexual process in which cells become sexually mature under dark and submerged conditions and fuse with complementary mating-type cells. In the present study, we isolated D. discoideum insertional mutants defective in sexual cell fusion and identified the relevant gene, macA, which encodes a highly glycosylated, 2,041-amino-acid membrane protein (MacA). Although its overall similarity is restricted to proteins of unknown function within dictyostelids, it contains LamGL and discoidin domains, which are implicated in cell adhesion. The growth and development of macA-null mutants were indistinguishable from those of the parental strain. The overexpression of macA using the V18 promoter in a macA-null mutant completely restored its sexual defects. Although the macA gene encoded exactly the same protein in a complementary mating-type strain, it was expressed at a much lower level. These results suggest that MacA is indispensable for gamete interactions in D. discoideum, probably via cell adhesion. There is a possibility that it is controlled in a mating-typedependent manner.
SignificanceSex produces a new individual in which genetic material is reassorted and recombined. Most often, nuclear DNA is inherited from two parents, and organelle genomes are transmitted from only one of those parents. We report here genome-wide analysis of sexual recombination in social amoebae and show that inheritance in this protozoan is often triparental. Unusually, more than two gametes frequently fuse together and then split apart, allowing cytoplasm from multiple parents to be mixed. Progeny produced after two nuclei fuse and undergo meiosis thereby inherit nuclear DNA from two parents, and often mitochondrial DNA from a third. Our findings raise questions about mechanisms by which mitochondrial genes can promote self-interested organelle behavior during sex in social amoebae and other eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.