In this study, poly(acrylonitrile-co-butadiene-co-styrene)/hollow glass microspheres (ABS/HGM) composites were prepared by means of a twin-screw extruder. HGM were incorporated at different loadings of 2.5, 5.0, and 7.5 wt.% at the central extruder zone with different types of ABS. The morphological, physical, thermal, rheological and mechanical properties of ABS/HGM composites were investigated. Statistical analysis reveals that high impact ABS addition is significant for improving composites' impact strength. The results also indicated that addition of 5.0 wt.% of HGM along with 5.0 wt.% of powdery ABS at the central extruder zone maintains the HGM integrity while powdery ABS contributes to better filler dispersion in the matrix resulting in light-weight composites having improved mechanical properties.
Hollow glass microspheres (HGMs) filled poly(acrylonitrile-co-butadiene-co-styrene) (ABS) composites were prepared by means of a twin-screw extruder. S038 HGMs were incorporated at different percentages of 2.5, 5.0, and 7.5 wt%. The HGMs were added into the twin-screw extruder at two different feeding zones, and the effect of HGMs loading and specific feeding zone addition on the composites produced was evaluated with regard to morphological, thermal, rheological, physical, and mechanical properties. As a result, the composite density was reduced while the thermal stability, storage modulus, complex viscosity, and tensile and flexural modulus were improved when compared with the ABS matrix. The results also indicate that the addition of 5.0 wt% of HGMs at the feeding zone closer to the die maintains the integrity of the HGMs and promotes composites with higher mechanical properties and lower density when compared with the composites obtained with the addition of HGMs closer to the hopper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.