Bird flocks under predation demonstrate complex patterns of collective escape. These patterns may emerge by self-organization from local interactions among group-members. Computational models have been shown to be valuable for identifying what behavioral rules may govern such interactions among individuals during collective motion. However, our knowledge of such rules for collective escape is limited by the lack of quantitative data on bird flocks under predation in the field. In the present study, we analyze the first GPS trajectories of pigeons in airborne flocks attacked by a robotic falcon in order to build a species-specific model of collective escape. We use our model to examine a recently identified distance-dependent pattern of collective behavior: the closer the prey is to the predator, the higher the frequency with which flock members turn away from it. We first extract from the empirical data of pigeon flocks the characteristics of their shape and internal structure (bearing angle and distance to nearest neighbors). Combining these with information on their coordination from the literature, we build an agent-based model adjusted to pigeons’ collective escape. We show that the pattern of turning away from the predator with increased frequency when the predator is closer arises without prey prioritizing escape when the predator is near. Instead, it emerges through self-organization from a behavioral rule to avoid the predator independently of their distance to it. During this self-organization process, we show how flock members increase their consensus over which direction to escape and turn collectively as the predator gets closer. Our results suggest that coordination among flock members, combined with simple escape rules, reduces the cognitive costs of tracking the predator while flocking. Such escape rules that are independent of the distance to the predator can now be investigated in other species. Our study showcases the important role of computational models in the interpretation of empirical findings of collective behavior.
Complex patterns of collective behaviour may emerge through self-organization, from local interactions among individuals in a group. To understand what behavioural rules underlie these patterns, computational models are often necessary. These rules have not yet been systematically studied for bird flocks under predation. Here, we study airborne flocks of homing pigeons attacked by a robotic falcon, combining empirical data with a species-specific computational model of collective escape. By analysing GPS trajectories of flocking individuals, we identify two new patterns of collective escape: early splits and collective turns, occurring even at large distances from the predator. To examine their formation, we extend an agent-based model of pigeons with a ‘discrete’ escape manoeuvre by a single initiator, namely a sudden turn interrupting the continuous coordinated motion of the group. Both splits and collective turns emerge from this rule. Their relative frequency depends on the angular velocity and position of the initiator in the flock: sharp turns by individuals at the periphery lead to more splits than collective turns. We confirm this association in the empirical data. Our study highlights the importance of discrete and uncoordinated manoeuvres in the collective escape of bird flocks and advocates the systematic study of their patterns across species.
Conservation biology was founded on the idea that efforts to save nature depend on a scientific understanding of how it works. It sought to apply ecological principles to conservation problems. We investigated whether the relationship between these fields has changed over time through machine reading the full texts of 32,000 research articles published in 16 ecology and conservation biology journals. We examined changes in research topics in both fields and how the fields have evolved from 2000 to 2014. As conservation biology matured, its focus shifted from ecology to social and political aspects of conservation. The 2 fields diverged and now occupy distinct niches in modern science. We hypothesize this pattern resulted from increasing recognition that social, economic, and political factors are critical for successful conservation and possibly from rising skepticism about the relevance of contemporary ecological theory to practical conservation. allocation Relaciones entre la Biología de la Conservación y la Ecología Mostradas a través de la Lectura Mediante Máquina de 32,000 Artículos Resumen: La biología de la conservación se fundó a partir de la idea de que los esfuerzos para salvar a la naturaleza dependen del entendimiento científico de cómo funciona. La biología de la conservación buscaba aplicar los principios ecológicos a los problemas de conservación. En este trabajo investigamos si la relación entre estosámbitos ha cambiado con el tiempo al realizar una lectura mediante máquina de 32,000 textos completos de artículos de investigación publicados en 16 revistas sobre ecología y biología de la conservación. También examinamos los cambios en los temas de investigación en ambosámbitos y cómoéstos han evolucionado desde el año 2000 hasta el 2014. Conforme ha madurado la biología de la conservación, su enfoque se ha movido de los aspectos ecológicos de la conservación a los aspectos políticos y sociales. La ecología y la biología de la conservación se han separado y ahora ocupan nichos distintos dentro de la ciencia moderna. Nuestra hipótesis considera que este patrón resultó de incrementar el reconocimiento de que los factores sociales, económicos y políticos son muy importantes para una conservación exitosa. Posiblemente el patrón también proviene del * email j.rosindell@imperial.ac.uk †Both the authors contributed equally. Article Impact statement: Quantitative literature evaluation reveals that the research topics of ecology and conservation biology are drawing apart.
1. A single sheepdog can bring together and manoeuvre hundreds of sheep from one location to another. Engineers and ecologists are fascinated by this sheepdog herding because of the potential it provides for 'bio-herding': a biologically inspired herding of animal groups by robots. Although many herding algorithms have been proposed, most are studied via simulation.2. There are a variety of ecological problems where management of wild animal groups is currently impossible, dangerous and/or costly for humans to manage directly, and which may benefit from bio-herding solutions.3. Unmanned aerial vehicles (UAVs) now deliver significant benefits to the economy and society. Here, we suggest the use of UAVs for bio-herding. Given their mobility and speed, UAVs can be used in a wide range of environments and interact with animal groups at sea, over the land and in the air.4. We present a potential roadmap for achieving bio-herding using a pair of UAVs.In our framework, one UAV performs 'surveillance' of animal groups, informing the movement of a second UAV that herds them. We highlight the promise and flexibility of a paired UAV approach while emphasising its practical and ethical challenges. We start by describing the types of experiments and data required to understand individual and collective responses to UAVs. Next, we describe how to develop appropriate herding algorithms. Finally, we describe the integration of bio-herding algorithms into software and hardware architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.