Cold seeps are among the most heterogeneous of all continental margin habitats. Abiotic Sources of heterogeneity in these systems include local variability in fluid flow, geochemistry, and substrate type, which give rise to different sets of microbial communities, microbial symbiont-bearing foundation species, and associated heterotrophic species. Biogenic habitats created by microbial mats and the symbiotic species including vesicomyid clams, bathymodiolin mussels, and siboglinid tubeworms add an additional layer of complexity to seep habitats. These forms of habitat heterogeneity result in a variety of macrofaunal and meiofaunal communities that respond to changes in structural complexity, habitat geochemistry, nutrient sources, and interspecific interactions in different ways and at different scales. These responses are predicted by a set of theoretical metacommunity models, the most appropriate of which for seep systems appears to be the 'species sorting' concept, an extension of niche theory. This concept is demonstrated through predictable patterns of community assembly, succession, and beta-level diversity. These processes are described using a newly developed analytical technique examining the change in the slope of the species accumulation curve with the number of habitats examined. The diversity response to heterogeneity has a consistent form, but quantitatively changes at different seep sites around the world as the types of habitats present and the size-classes of fauna analyzed change. The increase in beta diversity across seep habitat types demonstrates that cold seeps and associated biogenic habitats are significant sources of heterogeneity on continental margins globally
2008). DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments.-Zoologica Scripta, 37, 93-108. Fifty-six sequences of the mitochondrial 16S RNA gene were generated for hydroids, belonging to six nominal families -Eudendriidae, Lafoeidae, Haleciidae, Sertulariidae, Plumulariidae and Aglaopheniidae -collected from bathyal environments of the Gulf of Cadiz (22 haplotypes), Greenland (1 haplotype), Azores (1 haplotype), the shallow waters of the UK (17 haplotypes) and Portugal (2 haplotypes). When combined and analysed with 68 additional sequences published in GenBank, corresponding to 63 nominal species of these families (nine species in common between the GenBank sequences and those presented by the authors), cryptic species were detected (e.g. two species of Nemertesia and other of Lafoea), as well as apparent cases of conspecificity (e.g. Nemertesia antennina and N. perrieri and Aglaophenia octodonta, A. pluma and A. tubiformis). Other taxonomic inconsistencies were found in the data including cases where species from different genera clustered together (e.g. Sertularia cupressina, Thuiaria thuja, Abietinaria abietina and Ab. filicula). The mitochondrial 16S rRNA proved to be a useful DNA 'barcode' gene for hydroids, not only allowing discrimination of species, but also in some cases of populations, genera and families, and their intra-or interphylogenetic associations. Although still under-represented in public data bases, the 16S rRNA gene is starting to be used frequently in the study of hydroids. These data provide powerful complementary evidence for advancing our understanding of hydrozoan systematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.