Mutant isocitrate dehydrogenase 1 (IDH1) catalyzes the production of 2-hydroxyglutarate but also elicits additional metabolic changes. Levels of both glutamate and pyruvate dehydrogenase (PDH) activity have been shown to be affected in U87 glioblastoma cells or normal human astrocyte (NHA) cells expressing mutant IDH1, as compared to cells expressing wild-type IDH1. In this study, we show how these phenomena are linked through the effects of IDH1 mutation, which also reprograms pyruvate metabolism. Reduced PDH activity in U87 glioblastoma and NHA IDH1 mutant cells was associated with relative increases in PDH inhibitory phosphorylation, expression of pyruvate dehydrogenase kinase-3 and levels of hypoxia inducible factor-1α. PDH activity was monitored in these cells by hyperpolarized 13C-magnetic resonance spectroscopy (13C-MRS), which revealed a reduction in metabolism of hyperpolarized 2-13C-pyruvate to 5-13C-glutamate, relative to cells expressing wild-type IDH1. 13C-MRS also revealed a reduction in glucose flux to glutamate in IDH1 mutant cells. Notably, pharmacological activation of PDH by cell exposure to dichloroacetate (DCA) increased production of hyperpolarized 5-13C-glutamate in IDH1 mutant cells. Further, DCA treatment also abrogated the clonogenic advantage conferred by IDH1 mutation. Using patient-derived mutant IDH1 neurosphere models, we showed that PDH activity was essential for cell proliferation. Taken together, our results established that the IDH1 mutation induces an MRS-detectable reprogramming of pyruvate metabolism which is essential for cell proliferation and clonogenicity, with immediate therapeutic implications.
cd(1) nitrite reductase (NIR) is a key enzyme in the denitrification process that reduces nitrite to nitric oxide (NO). It contains a specialized d(1)-heme cofactor, found only in this class of enzymes, where the substrate, nitrite, binds and is converted to NO. For a long time, it was believed that NO must be released from the ferric d(1)-heme to avoid enzyme inhibition by the formation of ferrous-nitroso complex, which was considered as a dead-end product. However, recently an enhanced rate of NO dissociation from the ferrous form, not observed in standard b-type hemes, has been reported and attributed to the unique d(1)-heme structure (Rinaldo, S.; Arcovito, A.; Brunori, M.; Cutruzzolà, F. J. Biol. Chem. 2007, 282, 14761-14767). Here, we report on a detailed study of the spatial and electronic structure of the ferrous d(1)-heme NO complex from Pseudomonas aeruginosa cd(1) NIR and two mutants Y10F and H369A/H327A in solution, searching for the unique properties that are responsible for the relatively fast release. There are three residues at the "distal" side of the heme (Tyr(10), His(327), and His(369)), and in this work we focus on the identification and characterization of possible H-bonds they can form with the NO, thereby affecting the stability of the complex. For this purpose, we have used high field pulse electron-nuclear double resonance (ENDOR) combined with density functional theory (DFT) calculations. The DFT calculations were essential for assigning and interpreting the ENDOR spectra in terms of geometric structure. We have shown that the NO in the nitrosyl d(1)-heme complex of cd(1) NIR forms H-bonds with Tyr(10) and His(369), whereas the second conserved histidine, His(327), appears to be less involved in NO H-bonding. This is in contrast to the crystal structure that shows that Tyr(10) is removed from the NO. We have also observed a larger solvent accessibility to the distal pocket in the mutants as compared to the wild-type. Moreover, it was shown that the H-bonding network within the active site is dynamic and that a change in the protonation state of one of the residues does affect the strength and position of the H-bonds formed by the others. In the Y10F mutant, His(369) is closer to the NO, whereas mutation of both distal histidines displaces Tyr(10), removing its H-bond. The implications of the H-bonding network found in terms of the complex stability and catalysis are discussed.
Current standard of care for glioblastoma (GBM) is surgical resection, radiation, and treatment with Temozolomide (TMZ). However, resistance to current therapies and recurrence are common. To improve survival, agents that target the phosphoinositide-3-kinase (PI3K) signaling pathway, which is activated in ∼88% of GBM, are currently in clinical trials. A challenge with such therapies is that tumor shrinkage is not always observed. New imaging methods are therefore needed to monitor response to therapy and predict survival. The goal of this study was to determine whether hyperpolarized 13C magnetic resonance spectroscopic imaging (MRSI) and 1H magnetic resonance spectroscopy (MRS) can be used to monitor response to the second-generation dual PI3K/mTOR inhibitor voxtalisib (XL765, SAR245409), alone or in combination with TMZ. We investigated GS-2 and U87-MG GBM orthotopic tumors in mice, and used magnetic resonance imaging (MRI), hyperpolarized 13C MRSI and 1H MRS to monitor the effects of treatment. In our study, 1H MRS could not predict tumor response to therapy. However, in both our models, we observed a significantly lower hyperpolarized lactate-to-pyruvate ratio in animals treated with voxtalisib, TMZ, or combination therapy, when compared to controls. This metabolic alteration was observed prior to MRI-detectable changes in tumor size, was consistent with drug-action, and was associated with enhanced animal survival. Our findings confirm the potential translational value of the hyperpolarized lactate-to-pyruvate ratio as a biomarker for noninvasively assessing the effects of emerging therapies for patients with GBM.
The binding of NO to reduced myoglobin in solution results in the formation of two paramagnetic nitrosyl myoglobin (MbNO) complexes: one with a rhombic g-factor and the other with an axial one, referred to as the R- and A-forms. In spite of past extensive studies of MbNO by crystallography, spectroscopy and quantum chemical calculations it is still not clear what factors determine the appearance of the two forms. In this work we applied a combination of state of the art quantum chemical calculations and high field pulsed EPR spectroscopy (W-band, 3.4 T/95 GHz) to further characterize the two forms. Specifically, we have used (1)H and (2)H electron-nuclear double resonance (ENDOR) spectroscopy to identify and characterize the H-bond to the NO, and hyperfine sub-level correlation (HYSCORE) spectroscopy to determine the hyperfine and quadrupole interactions of the Fe(ii) coordinated (14)N of the proximal histidine (14)N(His93). The calculations employed quantum mechanics (QM), particularly density functional theory (DFT) methods in combination with molecular mechanics (MM) force-field to model the protein environment. Through QM/MM calculations of the EPR parameters we have explored their dependence on several geometrical factors of the Fe-NO bond and found those that reproduce the best experimental results. The spread of the W-band EPR spectrum of MbNO due to the g-anisotropy is large and there is a significant part of the spectrum where the R-form is the sole contributor. This allowed us to resolve some new characteristics of the R-form: (i) a NO-H hydrogen bond has been detected and characterized and through QM/MM calculations has been unambiguously assigned to (epsilon2)H(His64). (ii) The complete hyperfine and quadrupole interactions of (14)N(His93) have been determined and correlated with structural parameters again using QM/MM calculations. The agreement between the experimental results and calculations varied between excellent and good, depending on the EPR parameter in question. As for the more elusive A-form, the results only suggest that it does have a (14)N(His93) ligand with a hyperfine comparable to that of the R-form and it has less hydrogen bonding interaction with His(64). The calculations also established the orientation of the principal g-values, finding that they are closely related to the orientation of the NO bond. This information is essential for deriving structural information from the experimental orientation selective HYSCORE and ENDOR data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.