To reduce fuel consumption and exhaust emissions in hybrid electric vehicles (HEVs), it is important to develop a well-organized energy management system (EMS). This paper proposes a torque control strategy coupled with optimization for a parallel HEV. A torque control strategy is developed first. In particular, a function to control the driving condition, called the internal combustion engine (ICE) torque control function, is introduced. This function controls the driving conditions (electric motor (EM) driving, ICE driving, and ICE driving assisted by EM) for reducing fuel consumption and exhaust emissions. This function depends on several design variables that should be optimized. Numerical simulation of HEV using Matlab/Simulink is so computationally intensive that a sequential approximate optimization (SAO) using a radial basis function network (RBF) is adopted to determine the optimal values of these design variables. As the result, the optimal ICE torque control function is determined with a small number of simulation runs. In this paper, CO 2 and NO x emissions are minimized simultaneously for reducing the fuel consumption and exhaust emission. Through numerical simulations using typical driving cycles, the trade-off between CO 2 and NO x emissions is clarified and the validity of the proposed torque control strategy coupled with the proposed optimization is examined.
Optimal blank shape minimizing earing in deep drawing has a direct influence on material saving as well as product quality. A number of methods for blank shape optimization have been previously proposed, most of which adopt a closed-loop type algorithm that requires a large number of simulation runs. Numerical simulation in sheet metal forming is so numerically intensive that it is preferable to find an optimal blank shape with a small number of simulation runs. This paper proposes a method for determining the optimal blank shape design in square cup deep drawing using sequential approximate optimization (SAO) with a radial basis function (RBF) network. Sheet metal forming is multi-objective in nature, and thus the blank shape design problem is formulated as a multi-objective design optimization. The aim is therefore to identify the pareto-frontier with a small number of simulation runs. The earing is minimized under tearing and wrinkling constraints with a variable blank holder force (VBHF), which varies through the punch stroke. Numerical results show that the disconnected pareto-frontier is well identified with a small number of simulation runs. The earing of the optimal blank shape with the VBHF is also drastically reduced, when compared to a reference blank shape. Based on the numerical results, the experiments using a servo press are carried out. Consequently, the validity of the proposed approach is confirmed through the numerical and experimental results.
In deep drawing, area above the trimmed line is called earing. Reduction of the earing in deep drawing is one of the major issues for cost reduction. In addition, a high BHF causes tearing while a low BHF leads to wrinkling. Therefore it is important to determine an appropriate BHF through drawing. Recently, variable BHF (VBHF) approach which varies through the punch stroke has received a lot of attention, and its validity is discussed. In this study, both initial blank shape minimizing the earing and VBHF trajectory are simultaneously determined under tearing/wrinkling constants. Our design problem is formulated as a multi-objective design optimization for evaluation the earing. First objective function is the area above the trimmed line, and second one is the area below the trimmed line. In general, numerical simulation in sheet forming is so expensive that a sequential approximate optimization (SAO) using the radial basis function (RBF) network is adopted to identify the Pareto-frontier. The validity of the proposed approach is examined through numerical simulation. It can be found from the numerical result that earing is drastically reduced by the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.