Machine translation (MT) on its own is generally not good enough to produce highquality translations, so it is common to have humans intervening in the translation process to improve MT output. A typical intervention is post-editing (PE), where a human translator corrects errors in the MT output. Another is interactive translation prediction (ITP), which involves an MT system presenting a translator with translation suggestions they can accept or reject, actions the MT system then uses to present them with new, corrected suggestions. Both Macklovitch (2006) and Koehn (2009) found ITP to be an efficient alternative to unassisted translation in terms of processing time. So far, phrase-based statistical ITP has not yet proven to be faster than PE (Koehn 2009;Sanchis-Trilles et al. 2014;Underwood et al. 2014;Green et al. 2014;Alves et al. 2016;Alabau et al. 2016). In this paper we present the results of an empirical study on translation productivity in ITP with an underlying neural MT system (NITP). Our results show that over half of the professional translators in our study translated faster with NITP compared to PE, and most preferred it over PE. We also examine differences between PE and ITP in other translation productivity indicators and translators' reactions to the technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.