In order to clarify the role of angiogenic factors in polyneuropathy of POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, skin changes) syndrome, we measured the serum concentrations of vascular endothelial growth factor (VEGF) and erythropoietin (EPO) in 11 patients and correlated these with VEGF and EPO peripheral nerve expression and the degree of endoneurial vessel involvement. We found that POEMS syndrome was associated with high levels of serum VEGF and, conversely, low levels of serum EPO. Similarly, in POEMS nerves VEGF was highly expressed in blood vessels and some non-myelin-forming Schwann cells. In contrast, the expression of VEGF receptor 2 was down-regulated compared with that in normal nerves. Both EPO and EPO receptor were localized to the nerve vasculature and were expressed to similar extents in normal and POEMS nerves. The inverse correlation between VEGF and EPO serum levels was maintained during the clinical course; however, both levels returned to normal when there was a response to therapy. High serum VEGF, low serum EPO and high peripheral nerve VEGF were all associated with more severe endoneurial vessel involvement and nerve damage. Light microscopy showed an increased thickness of the basal lamina and a narrowing of the lumina of endoneurial vessels in POEMS samples, while proliferation of endothelial cells and opening of tight junctions were observed by electron microscopy. The present data support the role of angiogenic factors as diagnostic and prognostic markers of POEMS syndrome. They also suggest that VEGF and EPO are involved in the pathogenesis of polyneuropathy. In conclusion, establishing the role of angiogenic factors in polyneuropathy may lead to a better understanding of the effects of VEGF and EPO on microangiopathy and Schwann cell function.
Spastic paraplegia type 5 (SPG5) is a rare subtype of hereditary spastic paraplegia, a highly heterogeneous group of neurodegenerative disorders defined by progressive neurodegeneration of the corticospinal tract motor neurons. SPG5 is caused by recessive mutations in the gene CYP7B1 encoding oxysterol-7α-hydroxylase. This enzyme is involved in the degradation of cholesterol into primary bile acids. CYP7B1 deficiency has been shown to lead to accumulation of neurotoxic oxysterols. In this multicentre study, we have performed detailed clinical and biochemical analysis in 34 genetically confirmed SPG5 cases from 28 families, studied dose-dependent neurotoxicity of oxysterols in human cortical neurons and performed a randomized placebo-controlled double blind interventional trial targeting oxysterol accumulation in serum of SPG5 patients. Clinically, SPG5 manifested in childhood or adolescence (median 13 years). Gait ataxia was a common feature. SPG5 patients lost the ability to walk independently after a median disease duration of 23 years and became wheelchair dependent after a median 33 years. The overall cross-sectional progression rate of 0.56 points on the Spastic Paraplegia Rating Scale per year was slightly lower than the longitudinal progression rate of 0.80 points per year. Biochemically, marked accumulation of CYP7B1 substrates including 27-hydroxycholesterol was confirmed in serum (n = 19) and cerebrospinal fluid (n = 17) of SPG5 patients. Moreover, 27-hydroxycholesterol levels in serum correlated with disease severity and disease duration. Oxysterols were found to impair metabolic activity and viability of human cortical neurons at concentrations found in SPG5 patients, indicating that elevated levels of oxysterols might be key pathogenic factors in SPG5. We thus performed a randomized placebo-controlled trial (EudraCT 2015-000978-35) with atorvastatin 40 mg/day for 9 weeks in 14 SPG5 patients with 27-hydroxycholesterol levels in serum as the primary outcome measure. Atorvastatin, but not placebo, reduced serum 27-hydroxycholesterol from 853 ng/ml [interquartile range (IQR) 683-1113] to 641 (IQR 507-694) (-31.5%, P = 0.001, Mann-Whitney U-test). Similarly, 25-hydroxycholesterol levels in serum were reduced. In cerebrospinal fluid 27-hydroxycholesterol was reduced by 8.4% but this did not significantly differ from placebo. As expected, no effects were seen on clinical outcome parameters in this short-term trial. In this study, we define the mutational and phenotypic spectrum of SPG5, examine the correlation of disease severity and progression with oxysterol concentrations, and demonstrate in a randomized controlled trial that atorvastatin treatment can effectively lower 27-hydroxycholesterol levels in serum of SPG5 patients. We thus demonstrate the first causal treatment strategy in hereditary spastic paraplegia.
Spastic paraplegia type 10 (SPG10) is an autosomal dominant form of hereditary spastic paraplegia (HSP) due to mutations in KIF5A, a gene encoding the neuronal kinesin heavy chain implicated in anterograde axonal transport. KIF5A mutations were found in both pure and complicated forms of the disease; a single KIF5A mutation was also detected in a CMT2 patient belonging to an SPG10 mutant family. To confirm the involvement of the KIF5A gene in both CMT2 and SPG10 phenotypes and to define the frequency of KIF5A mutations in an Italian HSP patient population, we performed a genetic screening of this gene in a series of 139 HSP and 36 CMT2 affected subjects. We identified five missense changes, four in five HSP patients and one in a CMT2 subject. All mutations, including the one segregating in the CMT2 patient, are localized in the kinesin motor domain except for one, falling within the stalk domain and predicted to generate protein structure destabilization. The results obtained indicate a KIF5A mutation frequency of 8.8% in the Italian HSP population and identify a region of the kinesin protein, the stalk domain, as a novel target for mutation. In addition, the mutation found in the CMT2 patient strengthens the hypothesis that CMT2 and SPG10 are the extreme phenotypes resulting from mutations in the same gene.
Intra‐arterial transplantation of mesoangioblasts proved safe and partially efficacious in preclinical models of muscular dystrophy. We now report the first‐in‐human, exploratory, non‐randomized open‐label phase I–IIa clinical trial of intra‐arterial HLA‐matched donor cell transplantation in 5 Duchenne patients. We administered escalating doses of donor‐derived mesoangioblasts in limb arteries under immunosuppressive therapy (tacrolimus). Four consecutive infusions were performed at 2‐month intervals, preceded and followed by clinical, laboratory, and muscular MRI analyses. Two months after the last infusion, a muscle biopsy was performed. Safety was the primary endpoint. The study was relatively safe: One patient developed a thalamic stroke with no clinical consequences and whose correlation with mesoangioblast infusion remained unclear. MRI documented the progression of the disease in 4/5 patients. Functional measures were transiently stabilized in 2/3 ambulant patients, but no functional improvements were observed. Low level of donor DNA was detected in muscle biopsies of 4/5 patients and donor‐derived dystrophin in 1. Intra‐arterial transplantation of donor mesoangioblasts in human proved to be feasible and relatively safe. Future implementation of the protocol, together with a younger age of patients, will be needed to approach efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.