Background Solitary pulmonary nodule (SPN) is a common finding in routine clinical practice when performing chest imaging tests. The vast majority of these nodules are benign, and only a small proportion are malignant. The application of predictive models of nodule malignancy in routine clinical practice would help to achieve better diagnostic management of SPN. The present systematic review was carried out with the purpose of critically assessing studies aimed at developing predictive models of solitary pulmonary nodule (SPN) malignancy from SPN incidentally detected in routine clinical practice. Methods We performed a search of available scientific literature until October 2020 in Pubmed, SCOPUS and Cochrane Central databases. The inclusion criteria were observational studies carried out in low-risk population from 35 years old onwards aimed at constructing predictive models of malignancy of pulmonary solitary nodule detected incidentally in routine clinical practice. Studies had to be published in peer-reviewed journals, either in Spanish, Portuguese or English. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches (such as radiomics). We used The Transparent Reporting of a multivariable Prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, to describe the type of predictive model included in each study, and The Prediction model Risk Of Bias ASsessment Tool (PROBAST) to evaluate the quality of the selected articles. Results A total of 186 references were retrieved, and after applying the exclusion/inclusion criteria, 15 articles remained for the final review. All studies analysed clinical and radiological variables. The most frequent independent predictors of SPN malignancy were, in order of frequency, age, diameter, spiculated edge, calcification and smoking history. Variables such as race, SPN growth rate, emphysema, fibrosis, apical scarring and exposure to asbestos, uranium and radon were not analysed by the majority of the studies. All studies were classified as high risk of bias due to inadequate study designs, selection bias, insufficient population follow-up and lack of external validation, compromising their applicability for clinical practice. Conclusions The studies included have been shown to have methodological weaknesses compromising the clinical applicability of the evaluated SPN malignancy predictive models and their potential influence on clinical decision-making for the SPN diagnostic management. Systematic review registration PROSPERO CRD42020161559
Background One of the main drawbacks in constructing a classification model is that some or all of the covariates are categorical variables. Classical methods either assign labels to each output of a categorical variable or are summarised measures (frequencies and percentages), which can be interpreted as probabilities. Methods We adopted a novel mathematical procedure to construct a classification model from categorical variables based on a non-classical probability approach. More specifically, we codified the variables following the categorical data representation from the Discriminant Correspondence Analysis before constructing a non-classical probability matrix system that represents an entangled system of dependent-independent variables. We then developed a disentangled procedure to obtain an empirical density function for each representative class (minimum of two classes). Finally, we constructed our classification model using the density functions. Results We applied the proposed procedure to build a classification model of the malignancy of Solitary Pulmonary Nodule (SPN) after five years of follow up using routine clinical data. First, with 2/3 (270) of the sample of 404 patients with SPN, we constructed the classification model, and then validated it with the remaining 1/3 (134) we validated it. We tested the procedure’s stability by repeating the analysis randomly 1000 times. We obtained a model accuracy of 0.74, an F1 score of 0.58, a Cohen’s Kappa value of 0.41 and a Matthews Correlation Coefficient of 0.45. Finally, the area under the ROC curve was 0.86. Conclusion The proposed procedure provides a machine learning classification model with an acceptable performance of a classification model of solitary pulmonary nodule malignancy constructed from routine clinical data and mainly composed of categorical variables. It provides an acceptable performance, which could be used by clinicians as a tool to classify SPN malignancy in routine clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.