Erwinia carotovora subsp. carotovora is a gram-negative bacterium that causes soft rot disease of many cultivated crops. When a collection of E. carotovora subsp. carotovora isolates was analyzed on a Southern blot using the harpin-encoding gene hrpN as probe, several harpinless isolates were found. Regulation of virulence determinants in one of these, strain SCC3193, has been characterized extensively. It is fully virulent on potato and in Arabidopsis thaliana. An RpoS (SigmaS) mutant of SCC3193, producing elevated levels of secreted proteins, was found to cause lesions resembling the hypersensitive response when infiltrated into tobacco leaf tissue. This phenotype was evident only when bacterial cells had been cultivated on solid minimal medium at low pH and temperature. The protein causing'the cell death was purified and sequenced, and the corresponding gene was cloned. The deduced sequence of the necrosis-inducing protein (Nip) showed homology to necrosis- and ethylene-inducing elicitors of fungi and oomycetes. A mutant strain of E. carotovora subsp. carotovora lacking the nip gene showed reduced virulence in potato tuber assay but was unaffected in virulence in potato stem or on other tested host plants.
Erwinia carotovora subsp. carotovora, a Gram-negative phytopathogenic bacterium, secretes an extracellular metalloprotease, PrtW. Previous results demonstrated that protease activity is necessary for the normal progression of disease symptoms caused by this bacterium. The present study revealed that the prtW gene constitutes an independent transcriptional unit. It is demonstrated that introduction of the prtW M plasmid in trans into the prtW N mutant restores the protease activity in this strain. Gene fusions to the gusA (β-glucuronidase) reporter were employed to analyse the transcription of prtW. The transcription of prtW is dependent on many environmental signals. When the bacteria were grown in the presence of potato extract, the expression of the protease gene was markedly higher at the beginning of the exponential phase of growth than that observed when cells were grown in the presence of polygalacturonate (PGA). Analysis of the promoter revealed that an essential regulatory region resided between 371 and 245 bp 5' of the translational start site. As this sequence showed no homology to the KdgR box it may be involved in the binding of an unknown negative regulator protein in E. carotovora subsp. carotovora. The differential responses of prtW expression to potato extract and to PGA appeared to be dependent on the KdgR repressor and the response regulator ExpA. According to the results presented here, it is conceivable that the multiple regulatory network allows flexibility in the expression of the prtW gene during different stages of infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.