Decision-making requires the accumulation of sensory evidence. However, in everyday life, sensory information is often ambiguous and contains decision-irrelevant features. This means that the brain must disambiguate sensory input and extract decision-relevant features. Sensory information processing and decision-making represent two subsequent stages of the perceptual decision-making process. While sensory processing relies on occipito-parietal neuronal activity during the earlier time window, decision-making lasts for a prolonged time, involving parietal and frontal areas. Although perceptual decision-making is being actively studied, its neuronal mechanisms under ambiguous sensory evidence lack detailed consideration. Here, we analyzed the brain activity of subjects accomplishing a perceptual decision-making task involving the classification of ambiguous stimuli. We demonstrated that ambiguity induced high frontal θ-band power for 0.15 s post-stimulus onset, indicating increased reliance on top-down processes, such as expectations and memory. Ambiguous processing also caused high occipito-parietal β-band power for 0.2 s and high fronto-parietal β-power for 0.35-0.42 s post-stimulus onset. We supposed that the former component reflected the disambiguation process while the latter reflected the decision-making phase. Our findings complemented existing knowledge about ambiguous perception by providing additional information regarding the temporal discrepancy between the different cognitive processes during perceptual decision-making.
The reliable and objective assessment of intelligence and personality has been a topic of increasing interest of contemporary neuroscience and psychology. It is known that intelligence can be measured by estimating the mental speed or velocity of information processing. This is usually measured as a reaction time during elementary cognitive task processing, while personality is often assessed by means of questionnaires. On the other hand, human personality affects the way a subject accomplishes elementary cognitive tasks and, therefore, some personality features can define intelligence. It is expected that these features, as well as mental abilities in performing cognitive tasks are associated with the brain’s electrical neural activity. Although several studies reported correlation between event-related potentials, mental ability and intelligence, there is a lack of information about time-frequency and spatio-temporal structures of neural activity which characterize this relation. In the present work, we analyzed human electroencephalograms (EEG) recorded during the performance of elementary cognitive tasks using the Schulte test, which is a paper-pencil based instrument for assessing elementary cognitive ability or mental speed. According to particular features found of the EEG structure, we divided the subjects into three groups. For subjects in each group, we applied the Sixteen Personality Factor Questionnaire (16PF) to assess the their personality traits. We demonstrated that each group exhibited a different score on the personality scale, such as warmth, reasoning, emotional stability and dominance. Summing up, we found a link between EEG features, mental abilities and personality traits. The obtained results can be of great interest for testing human personality to create automatized intelligent programs which combine simple tests and EEG measurements for real estimation of human personality traits and mental abilities.
In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top–down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain–computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.