SUMMARYThis paper presents the design, kinematics, dynamics and control of a low-cost parallel rehabilitation robot developed at the Universitat Politècnica de Valencia. Several position and force controllers have been tested to ensure accurate tracking performances. An orthopedic boot, equipped with a force sensor, has been placed over the platform of the parallel robot to perform exercises for injured ankles. Passive, active-assistive and active-resistive exercises have been implemented to train dorsi/plantar flexion, inversion and eversion ankle movements. In order to implement the controllers, the component-based middleware Orocos has been used with the advantage over other solutions that the whole scheme control can be implemented modularly. These modules are independent and can be configured and reconfigured in both configuration and runtime. This means that no specific knowledge is needed by medical staff, for example, to carry out rehabilitation exercises using this low-cost parallel robot. The integration between Orocos and ROS, with a CAD model displaying the actual position of the rehabilitation robot in real time, makes it possible to develop a teleoperation application. In addition, a teleoperated rehabilitation exercise can be performed by a specialist using a Wiimote (or any other Bluetooth device).
This paper presents a sensor fusion framework that improves the localization of mobile robots with limited computational resources. It employs an event based Kalman Filter to combine the measurements of a global sensor and an inertial measurement unit (IMU) on an event based schedule, using fewer resources (execution time and bandwidth) but with similar performance when compared to the traditional methods. The event is defined to reflect the necessity of the global information, when the estimation error covariance exceeds a predefined limit. The proposed experimental platforms are based on the LEGO Mindstorm NXT, and consist of a differential wheel mobile robot navigating indoors with a zenithal camera as global sensor, and an Ackermann steering mobile robot navigating outdoors with a SBG Systems GPS accessed through an IGEP board that also serves as datalogger. The IMU in both robots is built using the NXT motor encoders along with one gyroscope, one compass and two accelerometers from Hitecnic, placed according to a particle based dynamic model of the robots. The tests performed reflect the correct performance and low execution time of the proposed framework. The robustness and stability is observed during a long walk test in both indoors and outdoors environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.