The tumor suppressor BRCA2 participates in DNA double-strand break repair by RAD51-dependent homologous recombination and protects stressed DNA replication forks from nucleolytic attack. We demonstrate that the C-terminal Recombinase Binding (CTRB) region of BRCA2, encoded by gene exon 27, harbors a DNA binding activity. CTRB alone stimulates the DNA strand exchange activity of RAD51 and permits the utilization of RPA-coated ssDNA by RAD51 for strand exchange. Moreover, CTRB functionally synergizes with the Oligonucleotide Binding fold containing DNA binding domain and BRC4 repeat of BRCA2 in RPA-RAD51 exchange on ssDNA. Importantly, we show that the DNA binding and RAD51 interaction attributes of the CTRB are crucial for homologous recombination and protection of replication forks against MRE11-mediated attrition. Our findings shed light on the role of the CTRB region in genome repair, reveal remarkable functional plasticity of BRCA2, and help explain why deletion of Brca2 exon 27 impacts upon embryonic lethality.
Radiomic feature analysis has been shown to be effective at analyzing diagnostic images to model cancer outcomes. It has not yet been established how to best combine radiomic features in cancer patients with multifocal tumors. As the number of patients with multifocal metastatic cancer continues to rise, there is a need for improving personalized patient-level prognosis to better inform treatment. We compared six mathematical methods of combining radiomic features of 3,596 tumors in 831 patients with multiple brain metastases and evaluated the performance of these aggregation methods using three survival models: a standard Cox proportional hazards model, a Cox proportional hazards model with LASSO regression, and a random survival forest. Across all three survival models, the weighted average of the largest three metastases had the highest concordance index (95% confidence interval) of 0.627 (0.595–0.661) for the Cox proportional hazards model, 0.628 (0.591–0.666) for the Cox proportional hazards model with LASSO regression, and 0.652 (0.565–0.727) for the random survival forest model. This finding was consistent when evaluating patients with different numbers of brain metastases and different tumor volumes. Radiomic features can be effectively combined to estimate patient-level outcomes in patients with multifocal brain metastases. Future studies are needed to confirm that the volume-weighted average of the largest three tumors is an effective method for combining radiomic features across other imaging modalities and tumor types.
PURPOSE Deep learning (DL) models have rapidly become a popular and cost-effective tool for image classification within oncology. A major limitation of DL models is their vulnerability to adversarial images, manipulated input images designed to cause misclassifications by DL models. The purpose of the study is to investigate the robustness of DL models trained on diagnostic images using adversarial images and explore the utility of an iterative adversarial training approach to improve the robustness of DL models against adversarial images. METHODS We examined the impact of adversarial images on the classification accuracies of DL models trained to classify cancerous lesions across three common oncologic imaging modalities. The computed tomography (CT) model was trained to classify malignant lung nodules. The mammogram model was trained to classify malignant breast lesions. The magnetic resonance imaging (MRI) model was trained to classify brain metastases. RESULTS Oncologic images showed instability to small pixel-level changes. A pixel-level perturbation of 0.004 (for pixels normalized to the range between 0 and 1) resulted in most oncologic images to be misclassified (CT 25.6%, mammogram 23.9%, and MRI 6.4% accuracy). Adversarial training improved the stability and robustness of DL models trained on oncologic images compared with naive models ([CT 67.7% v 26.9%], mammogram [63.4% vs 27.7%], and MRI [87.2% vs 24.3%]). CONCLUSION DL models naively trained on oncologic images exhibited dramatic instability to small pixel-level changes resulting in substantial decreases in accuracy. Adversarial training techniques improved the stability and robustness of DL models to such pixel-level changes. Before clinical implementation, adversarial training should be considered to proposed DL models to improve overall performance and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.