Methods developed to determine the amount of water required (EWR) to sustain ecosystem services in non-perennial rivers need a different approach to those used in perennial rivers. Current EWR methods were mostly developed for use in perennial rivers. Non-perennial rivers differ from perennial ones in terms of variability in flow, periods of no-flow and related habitat availability. A DRIFT-ARID method (an adaptation of the Downstream Response to Imposed Flow Transformation (DRIFT) method) was developed, tested and adjusted, using the semi-permanent Mokolo River. Field data from five study sites was collected from April to May 2010 by a multidisciplinary team. The results were used in a DRIFT-ARID Decision Support System (DSS) to determine the impact of five chosen development scenarios in the Mokolo River Catchment. An integrated groundwater-surface water MIKE-SHE hydrological model was used to simulate the hydrology of the chosen scenarios. Specific non-perennial river indicators such as onset of dry phase were identified and included in the DRIFT-ARID DSS. DRIFT-ARID has the potential to be used in non-perennial rivers and, once set up, can provide results for future scenarios. The method now needs to be tested on other non-perennial river types, especially episodic rivers where data are scarce or non-existent.
Environmental water requirement (EWR) assessment methods, for ascertaining how much water should be retained in rivers to sustain ecological functioning and desired levels of biodiversity, have mostly been developed for perennial rivers. Despite non-perennial rivers comprising about 30-50% of the world's freshwater systems, data on their hydrology, biota and ecological functioning are sparse. Current EWR assessments require hydrological and other data that may not be available for such rivers and some adaptation in the methods used seems necessary. DRIFT is an EWR method for perennial (or near-perennial) rivers that has been developed in South Africa over the past two decades and is now widely applied nationally and internationally. When applied to the semi-permanent Mokolo River, challenges particular to, or accentuated by, non-perennial rivers included the reliable simulation of hydrological data, the extent of acceptable extrapolation of data, difficulties in predicting surface-water connectivity along the river, and the location and resilience of pools, as well as whether it was possible to identify a reference (natural) condition. DRIFT-ARID, reported on here, is an adaptation of the DRIFT approach to begin addressing these and other issues. It consists of 11 phases containing 29 activities.
The impacts associated with unconventional oil and gas (UOG) extraction will be cumulative in nature and will most likely occur on a regional scale, highlighting the importance of using strategic decision-making and management tools. Managing possible impacts responsibly is extremely important in a water scarce country such as South Africa, versus countries where more water may be available for UOG extraction activities. This review article explains the possible biophysical and socioeconomic impacts associated with UOG extraction within the South African context and how these complex impacts interlink. Relevant policy and governance frameworks to manage these impacts are also highlighted.
A fully integrated, physically-based MIKE SHE/MIKE11 model was developed for the Mokolo River basin flow system to simulate key hydraulic and hydrologic indicator inputs to the Downstream Response to Imposed Flow Transformation for Arid Rivers (DRIFT-ARID) decision support system (DSS). The DRIFT-ARID tool is used in this study to define environmental water requirements (EWR) for non-perennial river flow systems in South Africa to facilitate ecosystembased management of water resources as required by the National Water Act (Act No. 36 of 1998). Fifty years of distributed daily climate data (1950 to 2000) were used to calibrate the model against decades of daily discharge data at various gauges, measurements of Mokolo Dam stage levels, and one-time groundwater level measurements at hundreds of wells throughout the basin. Though the calibrated model captures much of the seasonal and post-event stream discharge response characteristics, lack of sub-daily climate and stream discharge data limits the ability to calibrate the model to event-level system response (i.e. peak flows). In addition, lack of basic subsurface hydrogeologic characterisation and transient groundwater level data limits the ability to calibrate the groundwater flow model, and therefore baseflow response, to a high level. Despite these limitations, the calibrated model was used to simulate changes in hydrologic and hydraulic indicators at five study sites within the basin for five 50-year land-use change scenarios, including a present-day (with dam), natural conditions (no development/irrigation), and conversion of present-day irrigation to game farm, mine/city expansion, and a combination of the last two. Challenges and recommendations for simulating the range of non-perennial systems are presented.
Environmental Water Assessments (EWAs) aim to protect the ecological integrity of rivers amidst increasing anthropogenic pressures on freshwater resources, and fish communities are the ecosystem component most commonly included. The Fish Response Assessment Index (FRAI) was developed to assess the integrity of fish communities in South African rivers and is commonly applied in EWA studies. This paper reports on the suitability of the FRAI for the non-perennial Seekoei River and discusses some of the challenges faced. Our relatively long and thorough study on the Seekoei River confirmed the concerns that earlier, snapshot, fish integrity assessments in the Orange River system raised: that the existing fish indices are not ideally suited for these rivers with their naturally low species richness and hardy, generalist fish communities. Other difficulties with the use of a score-based method include prediction of the expected species, calculation of a frequency of occurrence rating, selection of the right sampling times for comparative purposes, loss of habitats and sampling points under different flow conditions, and problems experienced when using accumulated data to try to correct for a situation of having too few sampling points. At this stage a more generalised approach is suggested for the Seekoei River, and ultimately other similar non-perennial systems. This could include a number of community characteristics, such as abundance, species richness, species diversity and evenness, recruitment, fish health and the presence/absence of exotic species.Available on website http://www.wrc.org.za
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.