Hepatic fibrosis is characterized by abnormal accumulation of extracellular matrix (ECM) that can lead to ductopenia, cirrhosis, and even malignant transformation. In this review, we examine cholestatic liver diseases characterized by extensive biliary fibrosis such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), polycystic liver disease (PLD), and MDR2 and BDL mouse models. Following biliary injury, cholangiocytes, the epithelial cells that line the bile ducts, become reactive and adopt a neuroendocrine phenotype in which they secrete and respond to neurohormones and neuropeptides in an autocrine and paracrine fashion. Emerging evidence indicates that cholangiocytes influence and respond to changes in the ECM and stromal cells in the microenvironment. For example, activated myofibroblasts and hepatic stellate cells are major drivers of collagen deposition and biliary fibrosis. Additionally, the liver is richly innervated with adrenergic, cholinergic, and peptidergic fibers that release neurohormones and peptides to maintain homeostasis and can be deranged in disease states. This review summarizes how cholangiocytes interact with their surrounding environment, with particular focus on how autonomic and sensory regulation affects fibrotic pathophysiology.
α7-nAChR is a nicotinic acetylcholine receptor [specifically expressed on hepatic stellate cells (HSCs), Kupffer cells, and cholangiocytes] that regulates inflammation and apoptosis in the liver. Thus, targeting α7-nAChR may be therapeutic in biliary diseases. Bile duct ligation (BDL) was performed on wild-type (WT) and α7-nAChR-/- mice. We first evaluated the expression of α7-nAChR by immunohistochemistry (IHC) in liver sections. IHC was also performed to assess intrahepatic bile duct mass (IBDM), and Sirius Red staining was performed to quantify the amount of collagen deposition. Immunofluorescence was performed to assess colocalization of α7-nAChR with bile ducts (costained with CK-19) and HSCs (costained with desmin). The mRNA expression of α7-nAChR, Ki-67/PCNA (proliferation), fibrosis genes (TGF-β1, fibronectin-1, Col1α1, and α-SMA), and inflammatory markers (IL-6, IL-1β, and TNF-α) was measured by real-time PCR. Biliary TGF-β1 and hepatic CD68 (Kupffer cell marker) expression was assessed using IHC. α7-nAChR immunoreactivity was observed in both bile ducts and HSCs and increased following BDL. α7-nAChR-/- BDL mice exhibited decreased (i) bile duct mass, liver fibrosis, and inflammation, and (ii) immunoreactivity of TGF-β1 as well as expression of fibrosis genes compared to WT BDL mice. α7-nAChR activation triggers biliary proliferation and liver fibrosis and may be a therapeutic target in managing extrahepatic biliary obstruction.
Cholestatic liver disease encompasses a detrimental group of diseases that are non-discriminatory in nature. These diseases occur over every age range from infancy (biliary atresia) to geriatrics (hepatitis). They also cover both genders in the form of primary sclerosing cholangitis in men and primary biliary cholangitis in women. Oftentimes, owing to the disease progression and extensive scarring, the treatment of last resort becomes a liver transplant. In this review, we will briefly discuss and explore new avenues of understanding in the progression of cholestatic liver disease and possible therapeutic targets for intervention. The greater our understanding into the idiopathic nature of cholestatic liver disease, the better our chances of discovering treatment options to halt or reverse the progression, reducing or eliminating the need for expensive and risky transplants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.