BackgroundH3K27me3 histone marks shape the inhibition of gene transcription. In prostate cancer, the deregulation of H3K27me3 marks might play a role in prostate tumor progression.MethodsWe investigated genome-wide H3K27me3 histone methylation profile using chromatin immunoprecipitation (ChIP) and 2X400K promoter microarrays to identify differentially-enriched regions in biopsy samples from prostate cancer patients. H3K27me3 marks were assessed in 34 prostate tumors: 11 with Gleason score > 7 (GS > 7), 10 with Gleason score ≤ 7 (GS ≤ 7), and 13 morphologically normal prostate samples.ResultsHere, H3K27me3 profiling identified an average of 386 enriched-genes on promoter regions in healthy control group versus 545 genes in GS ≤ 7 and 748 genes in GS > 7 group. We then ran a factorial discriminant analysis (FDA) and compared the enriched genes in prostate-tumor biopsies and normal biopsies using ANOVA to identify significantly differentially-enriched genes. The analysis identified ALG5, EXOSC8, CBX1, GRID2, GRIN3B, ING3, MYO1D, NPHP3-AS1, MSH6, FBXO11, SND1, SPATS2, TENM4 and TRA2A genes. These genes are possibly associated with prostate cancer. Notably, the H3K27me3 histone mark emerged as a novel regulatory mechanism in poor-prognosis prostate cancer.ConclusionsOur findings point to epigenetic mark H3K27me3 as an important event in prostate carcinogenesis and progression. The results reported here provide new molecular insights into the pathogenesis of prostate cancer.
Acetylation is a major modification that is required for gene regulation, genome maintenance and metabolism. A dysfunctional acetylation plays an important role in several diseases, including cancer. A group of enzymes-lysine acetyltransferases are responsible for this modification and act in regulation of transcription as cofactors and by acetylation of histones and other proteins. Tip60, a member of MYST family, is expressed ubiquitously and is the acetyltransferase catalytic subunit of human NuA4 complex. This HAT has a well-characterized involvement in many processes, such as cellular signaling, DNA damage repair, transcriptional and cellular cycle. Aberrant lysine acetyltransferase functions promote or suppress tumorigenesis in different cancers such as colon, breast and prostate tumors. Therefore, Tip60 might be a potential and important therapeutic target in the cancer treatment; new histone acetyl transferase inhibitors were identified and are more selective inhibitors of Tip60.
BackgroundIt is well established that genetic and epigenetic alterations are common events in prostate cancer, which may lead to aberrant expression of critical genes. The importance of epigenetic mechanisms in prostate cancer carcinogenesis is increasingly evident. In this study, the focus will be on histone modifications and the primary objectives are to map H3K27me3 marks and quantify RAR beta 2, ER alpha, SRC3, RGMA, PGR, and EZH2 gene expressions in prostate cancer tissues compared to normal tissues. In addition, a data analysis was made in connection with the clinicopathological parameters.Methods71 normal specimens and 66 cancer prostate tissues were randomly selected in order to assess the proportion of the repressive H3K27me3 mark and gene expression. H3K27me3 level was evaluated by ChIP-qPCR and mRNA expression using RT-qPCR between prostate cancer and normal tissues. Subsequently, western-blotting was performed for protein detection. The analysis of variance (ANOVA) was performed, and Tukey’s test was used to correct for multiple comparisons (p-value threshold of 0.05). The principal component analysis (PCA) and discriminant factorial analysis (DFA) were used to explore the association between H3K27me3 level and clinicopathological parameters.ResultsThe study demonstrated that H3K27me3 level was significantly enriched at the RAR beta 2, ER alpha, PGR, and RGMA promoter regions in prostate cancer tissues compared to normal tissues. After stratification by clinicopathological parameters, the H3K27me3 level was positively correlated with Gleason score, PSA levels and clinical stages for RAR beta 2, ER alpha, PGR, and RGMA. High H3K27me3 mark was significantly associated with decreased RAR beta 2, ER alpha, PGR and RGMA gene expressions in prostate cancer sample compared to the normal one. Moreover, the results showed that mRNA level of EZH2, AR and SRC3 are upregulated in prostate cancer compared to normal prostate tissues and this correlates positively with Gleason score, PSA levels and clinical stages. Obviously, these observations were confirmed by protein level using western-blot.ConclusionsThis data clearly demonstrated that H3K27me3 level correlated with aggressive tumor features. Also this study revealed that reverse correlation of RAR beta 2, ER alpha, PGR, and RGMA expressions with EZH2, SRC3, and AR expressions in prostate cancer tissues suggests that these genes are the target of EZH2. Therefore, all therapeutic strategies leading to histone demethylation with epigenetic drugs such as histone methyltransferase inhibitor may be relevant treatments against prostate cancer.
Breast cancer is the most frequently diagnosed malignancy in women worldwide. It is well established that the complexity of carcinogenesis involves profound epigenetic deregulations that contribute to the tumorigenesis process. Deregulated H3 and H4 acetylated histone marks are amongst those alterations. Sirtuin-1 (SIRT1) is a class-III histone deacetylase deeply involved in apoptosis, genomic stability, gene expression regulation and breast tumorigenesis. However, the underlying molecular mechanism by which SIRT1 regulates H3 and H4 acetylated marks, and consequently cancer-related gene expression in breast cancer, remains uncharacterized. In this study, we elucidated SIRT1 epigenetic role and analyzed the link between the latter and histones H3 and H4 epigenetic marks in all 5 molecular subtypes of breast cancer. Using a cohort of 135 human breast tumors and their matched normal tissues, as well as 5 human-derived cell lines, we identified H3k4ac as a new prime target of SIRT1 in breast cancer. We also uncovered an inverse correlation between SIRT1 and the 3 epigenetic marks H3k4ac, H3k9ac and H4k16ac expression patterns. We showed that SIRT1 modulates the acetylation patterns of histones H3 and H4 in breast cancer. Moreover, SIRT1 regulates its H3 acetylated targets in a subtype-specific manner. Furthermore, SIRT1 siRNA-mediated knockdown increases histone acetylation levels at 6 breast cancer-related gene promoters: AR, BRCA1, ERS1, ERS2, EZH2 and EP300. In summary, this report characterizes for the first time the epigenetic behavior of SIRT1 in human breast carcinoma. These novel findings point to a potential use of SIRT1 as an epigenetic therapeutic target in breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.