Photosensitive reflex epilepsy is caused by the combination of an individual's enhanced sensitivity with relevant light stimuli, such as stroboscopic lights or video games. This is the most common reflex epilepsy in humans; it is characterized by the photoparoxysmal response, which is an abnormal electroencephalographic reaction, and seizures triggered by intermittent light stimulation. Here, by using genetic mapping, sequencing and functional analyses, we report that a mutation in the acceptor site of the second intron of SV2A (the gene encoding synaptic vesicle glycoprotein 2A) is causing photosensitive reflex epilepsy in a unique vertebrate model, the Fepi chicken strain, a spontaneous model where the neurological disorder is inherited as an autosomal recessive mutation. This mutation causes an aberrant splicing event and significantly reduces the level of SV2A mRNA in homozygous carriers. Levetiracetam, a second generation antiepileptic drug, is known to bind SV2A, and SV2A knock-out mice develop seizures soon after birth and usually die within three weeks. The Fepi chicken survives to adulthood and responds to levetiracetam, suggesting that the low-level expression of SV2A in these animals is sufficient to allow survival, but does not protect against seizures. Thus, the Fepi chicken model shows that the role of the SV2A pathway in the brain is conserved between birds and mammals, in spite of a large phylogenetic distance. The Fepi model appears particularly useful for further studies of physiopathology of reflex epilepsy, in comparison with induced models of epilepsy in rodents. Consequently, SV2A is a very attractive candidate gene for analysis in the context of both mono- and polygenic generalized epilepsies in humans.
The ChickRH6 radiation hybrid panel has been used to construct consensus chromosome radiation hybrid (RH) maps of the chicken genome. Markers genotyped were either from throughout the genome or targeted to specific chromosomes and a large proportion (one third) of data was the result of collaborative efforts. Altogether, 2,531 markers were genotyped, allowing the construction of RH reference maps for 20 chromosomes and linkage groups for four other chromosomes. Amongst the markers, 581 belong to the framework maps, while 1,721 are on the comprehensive maps. Around 800 markers still have to be assigned to linkage groups. Our attempt to assign the supercontigs from the chrun (virtual chromosome containing all the genome sequence that could not be attributed to a chromosome) as well as EST (Expressed Sequence Tag) contigs that do not have a BLAST hit in the genome assembly led to the construction of new maps for microchromosomes either absent or for which very little data is present in the genome assembly. RH data is presented through our ChickRH webserver (http://chickrh.toulouse.inra.fr/), which is a mapping tool as well as the official repository RH database for genotypes. It also displays the RH reference maps and comparison charts with the sequence thus highlighting the possible discrepancies. Future improvements of the RH maps include complete coverage of the sequence assigned to chromosomes, further mapping of the chrun and mapping of EST contigs absent from the assembly. This will help finish the mapping of the smallest gene-rich microchromosomes.
Background: The publication of the first draft chicken sequence assembly became available in 2004 and was updated in 2006. However, this does not constitute a definitive and complete sequence of the chicken genome, since the microchromosomes are notably under-represented. In an effort to develop maps for the microchromosomes absent from the chicken genome assembly, we developed radiation hybrid (RH) and genetic maps with markers isolated from sequence currently assigned to "chromosome Unknown" (chrUn). The chrUn is composed of sequence contigs not assigned to named chromosomes. To identify and map sequence belonging to the microchromosomes we used a comparative mapping strategy, and we focused on the small linkage group E26C13.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.