Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan (Wu et al., 2020; Zou et al., 2020), China, and rapidly spread worldwide. Previous studies suggested cats could be a susceptible species to SARS-CoV-2 (Shi et al., 2020; Zhang et al., 2020). Two cases of natural infection in dogs, without symptoms, were also reported in Hong Kong (Sit et al., 2020). Only 4 naturally infected cats have been reported to date (ProMED posts or OIE notifications). Among them, two exhibited cough and another one mild respiratory and digestive signs. SARS-CoV-2 infection was also reported in lions and tigers in the zoo in New York, suggesting susceptibility of wild Felidae to this virus. We investigated the putative infection by SARS-CoV-2 in cats and dogs from owners previously confirmed or suspected of being infected by SARS-CoV-2. Among them, one cat was tested positive by RT-qPCR on rectal swabs and serological analysis. The SARS-CoV-2 genome has been almost completely sequenced and clusters with the French human sequences circulating among infected humans.
A boy with X-linked agammaglobulinemia experienced progressive global motor decline, cerebellar syndrome, and epilepsy. All standard polymerase chain reactions for neurotropic viruses were negative on cerebrospinal fluid and brain biopsy. Next-generation sequencing allowed fast identification of a new astrovirus strain (HAstV-VA1/HMO-C-PA), which led to tailor the patient's treatment, with encouraging clinical monitoring over 1 year.
Hepatitis E virus (HEV) can cause enterically-transmitted hepatitis in humans. The zoonotic nature of Hepatitis E infections has been established in industrialized areas and domestic pigs are considered as the main reservoir. The dynamics of transmission in pig herds therefore needs to be understood to reduce the prevalence of viremic pigs at slaughter and prevent contaminated pig products from entering the food chain. An experimental trial was carried out to study the main characteristics of HEV transmission between orally inoculated pigs and naïve animals. A mathematical model was used to investigate three transmission routes, namely direct contact between pigs and two environmental components to represent within-and between-group oro-fecal transmission. A large inter-individual variability was observed in response to infection with an average latent period lasting 6.9 days (5.8; 7.9) in inoculated animals and an average infectious period of 9.7 days (8.2; 11.2). Our results show that direct transmission alone, with a partial reproduction number of 1.41 (0.21; 3.02), can be considered as a factor of persistence of infection within a population. However, the quantity of virus present in the environment was found to play an essential role in the transmission process strongly influencing the probability of infection with a within pen transmission rate estimated to 2 ⋅ 10− 6g ge− 1d− 1(1 ⋅ 10− 7; 7 ⋅ 10− 6). Between-pen environmental transmission occurred to a lesser extent (transmission rate: 7 ⋅ 10− 8g ge− 1d− 1(5 ⋅ 10− 9; 3 ⋅ 10− 7) but could further generate a within-group process. The combination of these transmission routes could explain the persistence and high prevalence of HEV in pig populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.