Plant-sourced proteins offer environmental and health benefits, and research increasingly includes them in study formulas. However, plant-based proteins have less of an anabolic effect than animal proteins due to their lower digestibility, lower essential amino acid content (especially leucine), and deficiency in other essential amino acids, such as sulfur amino acids or lysine. Thus, plant amino acids are directed toward oxidation rather than used for muscle protein synthesis. In this review, we evaluate the ability of plant- versus animal-based proteins to help maintain skeletal muscle mass in healthy and especially older people and examine different nutritional strategies for improving the anabolic properties of plant-based proteins. Among these strategies, increasing protein intake has led to a positive acute postprandial muscle protein synthesis response and even positive long-term improvement in lean mass. Increasing the quality of protein intake by improving amino acid composition could also compensate for the lower anabolic potential of plant-based proteins. We evaluated and discussed four nutritional strategies for improving the amino acid composition of plant-based proteins: fortifying plant-based proteins with specific essential amino acids, selective breeding, blending several plant protein sources, and blending plant with animal-based protein sources. These nutritional approaches need to be profoundly examined in older individuals in order to optimize protein intake for this population who require a high-quality food protein intake to mitigate age-related muscle loss.
One of the most noticeable effects of aging is the reduction in skeletal muscle mass and strength (sarcopenia). The metabolic syndrome (MS) is also prevalent in old subjects, but its relevance to skeletal muscle characteristics has poorly been investigated. Immunohistochemical studies were performed with muscle biopsies from young (22 years) and old (73 years) men with and without MS to reveal age-dependent and MS-associated modifications of fiber-type characteristics. Atrophy of type II fibers and altered fiber shape characterized muscle aging in lean healthy men. In contrast, increased cross-sectional area of the most abundant type I and type IIA fibers, and reduced cytochrome c oxidase content in all fiber types, characterized MS. Aging and particularly MS were associated with accumulation of intramyocellular lipid droplets. Although lipids mostly accumulated in type I fibers, matrix-assisted laser desorption/ionization-mass spectrometry imaging of intramyocellular lipids did not distinguish fiber types, but clearly separated young, old, and MS subjects. In conclusion, our study suggests that MS in the elderly persons is associated with alterations in skeletal muscle at a fiber-type specific level. Overall, these fiber type-specific modifications may be important both for the age-related loss of muscle mass and strength and for the increased prevalence of MS in elderly subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.