Mammary tumors in dogs hold great potential as naturally occurring breast cancer models in translational oncology, as they share the same environmental risk factors, key histological features, hormone receptor expression patterns, prognostic factors, and genetic characteristics as their human counterparts. We aimed to develop in vitro tools that allow functional analysis of canine mammary tumors (CMT), as we have a poor understanding of the underlying biology that drives the growth of these heterogeneous tumors. We established the long-term culture of 24 organoid lines from 16 dogs, including organoids derived from normal mammary epithelium or benign lesions. CMT organoids recapitulated key morphological and immunohistological features of the primary tissue from which they were derived, including hormone receptor status. Furthermore, genetic characteristics (driver gene mutations, DNA copy number variations, and single-nucleotide variants) were conserved within tumor-organoid pairs. We show how CMT organoids are a suitable model for in vitro drug assays and can be used to investigate whether specific mutations predict therapy outcomes. Specifically, certain CMT subtypes, such as PIK3CA mutated, estrogen receptor-positive simple carcinomas, can be valuable in setting up a preclinical model highly relevant to human breast cancer research. In addition, we could genetically modify the CMT organoids and use them to perform pooled CRISPR/Cas9 screening, where library representation was accurately maintained. In summary, we present a robust 3D in vitro preclinical model that can be used in translational research, where organoids from normal, benign as well as malignant mammary tissues can be propagated from the same animal to study tumorigenesis.
Organoid cultures could constitute a valuable in vitro model to explore new treatments for canine (c) medullary thyroid carcinoma (MTC). The study's objectives were to establish and characterize 3D organoid cultures of cMTC using histology and immunohistochemistry (IHC) and to evaluate the effect of antitumor drugs on organoids' viability.Five cMTC tissue samples were used to develop organoid cultures of which one organoid line, named cMTC N 2, could be passaged for an extended period. This cMTC N 2 organoid line was further compared to the primary tumour regarding morphology and IHC expression of thyroid transcription factor-1 (TTF-1), thyroglobulin, calcitonin, synaptophysin, vimentin, Ki-67, cyclooxygenase-2 (COX-2), P-glycoprotein and vascular endothelial growth factor (VEGF). Quality control of the cMTC N 2 organoid line was achieved by a single nucleotide polymorphism (SNP) array of the organoids, primary tumour and healthy blood cells of the same dog. The effect of carboplatin, meloxicam and toceranib phosphate (TOC) on cMTC N 2 organoids' viability was evaluated. The cMTC N 2 organoid line was cultured for 94 days and showed similar histological features with the primary tumour. Immunolabelling for TTF-1, thyroglobulin, calcitonin and VEGF was similar between the primary tumour and cMTC N 2 organoids. Compared to the primary tumour, organoids showed higher immunolabelling for vimentin and Ki-67, and lower immunolabelling for synaptophysin, COX-2 and P-glycoprotein. The SNP genotype was similar for each chromosome between healthy blood cells, primary tumour and cMTC N 2 organoids. Carboplatin, meloxicam and TOC had no effect on cMTC N 2 organoid cell viability within achievable in vivo concentration range. In conclusion, the cMTC N 2 organoid line is a promising first milestone towards an established in vitro organoid model to explore pathophysiology and new treatment modalities in cMTC.
Oncolytic viruses (OV) have gathered increasing interest in recent years as an alternative option to treat cancers. The Onderstepoort strain of canine distemper virus (CDV-OP), an enveloped RNA virus belonging to the genus Morbillivirus , is employed as a safe and efficient vaccine for dogs against distemper disease.
Mammary tumors in dogs hold great potential as naturally occurring breast cancer models in translational oncology, as they share the same environmental risk factors, key histological features, hormone receptor expression patterns, prognostic factors, and genetic characteristics as their human counterparts. We aimed to develop in vitro tools that allow functional analysis of canine mammary tumors (CMT), as we have a poor understanding of the underlying biology that drives the growth of these heterogeneous tumors. We established the long-term culture of 24 organoid lines from 16 patients, including organoids derived from normal mammary epithelium or benign lesions. CMT organoids recapitulated key morphological and immunohistological features of the primary tissue from which they were derived, including hormone receptor status. Furthermore, genetic characteristics (driver gene mutations, DNA copy number variations, and single-nucleotide variants) were conserved within tumor-organoid pairs. We show how CMT organoids are a suitable model for in vitro drug assays and can be used to investigate whether specific mutations predict therapy outcomes. In addition, we could genetically modify the CMT organoids and use them to perform pooled CRISPR/Cas9 screening, where library representation was accurately maintained. In summary, we present a robust 3D in vitro preclinical model that can be used in translational research, where organoids from normal, benign as well as malignant mammary tissues can be propagated from the same patient to study tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.