Aristolochene synthase, a metal-dependent sesquiterpene cyclase from Aspergillus terreus, catalyzes the ionization-dependent cyclization of farnesyl diphosphate (FPP) to form the bicyclic eremophilane (+)-aristolochene with perfect structural and stereochemical precision. Here, we report the X-ray crystal structure of aristolochene synthase complexed with three Mg2+ ions and the unreactive substrate analogue farnesyl-S-thiolodiphosphate (FSPP), showing that the substrate diphosphate group is anchored by metal coordination and hydrogen bond interactions identical to those previously observed in the complex with three Mg2+ ions and inorganic pyrophosphate (PPi). Moreover, the binding conformation of FSPP directly mimics that expected for productively bound FPP, with the exception of the precise alignment of the C-S bond with regard to the C10-C11 π system that would be required for C1-C10 bond formation in the first step of catalysis. We also report crystal structures of aristolochene synthase complexed with Mg2+3-PPi and ammonium or iminium analogues of bicyclic carbocation intermediates proposed for the natural cyclization cascade. Various binding orientations are observed for these bicyclic analogues, and these orientations appear to be driven by favorable electrostatic interactions between the positively charged ammonium group of the analogue and the negatively charged PPi anion. Surprisingly, the active site is sufficiently flexible to accommodate analogues with partially or completely incorrect stereochemistry. Although this permissiveness in binding is unanticipated, based on the stereochemical precision of catalysis that leads exclusively to the (+)-aristolochene stereoisomer, it suggests the ability of the active site to enable controlled reorientation of intermediates during the cyclization cascade. Taken together, these structures illuminate important aspects of the catalytic mechanism.
A renewable bisepoxide, SYR-EPO, was prepared from syringaresinol, a naturally occurring bisphenol deriving from sinapic acid, by using a chemo-enzymatic synthetic pathway. Estrogenic activity tests revealed no endocrine disruption for syringaresinol. Its glycidylation afforded SYR-EPO with excellent yield and purity. This biobased, safe epoxy precursor was then cured with conventional and renewable diamines for the preparation of epoxy-amine resins. The resulting thermosets were thermally and mechanically characterized. Thermal analyses of these new resins showed excellent thermal stabilities (T =279-309 °C) and T ranging from 73 to 126 °C, almost reaching the properties of those obtained with the diglycidylether of bisphenol A (DGEBA), extensively used in the polymer industry (T =319 °C and T =150 °C for DGEBA/isophorone diamine resins). Degradation studies in NaOH and HCl aqueous solutions also highlighted the robustness of the syringaresinol-based resins, similar to bisphenol A (BPA). All these results undoubtedly confirmed the potential of syringaresinol as a greener and safer substitute for BPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.