Sulfide-functionalized bambus[4]urils ((RS) BU[4]) and bambus[6]urils ((RS) BU[6]) were synthesized through thiol-ene click coupling reactions (TEC) of allylbambus[n]urils. Thiosugars were grafted to BU[4] and BU[6]. Synthesis of BU[6] derivatives always requires the use of a template anion (iodide, chloride, or bromide), which is enclosed in the cavity of BU[6]. We show that this anion influences the reactivity of bambus[6]urils. An encapsulated iodide makes allyl functions of allyl BU[6] less reactive towards TEC and hydrogenation reactions in comparison to the corresponding chloride or bromide inclusion complexes. This is critical for the chemical reactivity of BU[6] and even more to determine their anion-binding properties. We report a new, facile and fast method using AgSbF to prepare anion-free BU[6]. NMR spectroscopic methods were used to estimate association constants of these new empty BU[6] with different anions. Quantum chemical calculations were employed to rationalize the observed results. These new functionalized bambusuril scaffolds in alternate conformations could find applications as multivalent binders.
Propargylated bambus[4,6]urils were prepared by an efficient one-step condensation of dipropargylglycoluril with formaldehyde under microwave irradiation. Their functionalization by click chemistry (CuAAC) afforded new multivalent architectures decorated with 8 or 12 ligands. Grafting of glycosides provided water-soluble glycobambus [4,6]uril platforms with glucosyl 12 BU[6] showing good affinity toward iodide anion in aqueous medium.
Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.