Background: Recurrent shoulder instability may be associated with glenoid erosion and bone loss. Accurate quantification of bone loss significantly influences the contemplation of surgical procedure. In addition, assessment of bone loss is crucial for surgical planning and accurate graft placement during surgery. Purpose: To quantify the concave surface area of glenoid bone loss by using 3-dimensional (3D) segmented models of the scapula and to compare this method with the best-fit circle and glenoid height/width methods, which use the glenoid rim for bone loss estimations. Study Design: Cohort study (diagnosis); Level of evidence, 2. Methods: A total of 36 consecutive preoperative bilateral computed tomography scans of patients eligible for a primary Latarjet procedure were selected from our institutional surgical database (mean patient age, 29 ± 9 years; 31 men and 5 women). The 3D models of both scapulae were generated using medical segmentation software and were used to map the anatomic concave surface area (ACSA) of the inferior glenoid using the diameter of the best-fit circle of the healthy glenoid. Bone loss was calculated as a ratio of the difference between surface areas of both glenoids (healthy and pathological) against the anatomic circular surface area of the healthy glenoid (the ACSA method). These results were compared with bone loss calculations using the best-fit circle and glenoid height/width methods. Inter- and intraobserver reliability were also calculated. Results: The mean (± SD) bone loss calculated using the ACSA, the best-fit circle, and glenoid height/width methods was 9.4% ± 6.7%, 14.3% ± 6.8%, and 17.6% ± 7.3%, respectively. The ACSA method showed excellent interobserver reliability, with an intraclass correlation coefficient (ICC) of 0.95 versus those for the best-fit circle (ICC, 0.71) and glenoid height/width (ICC, 0.79) methods. Conclusion: Quantification of instability-related glenoid bone loss is reliable using the 3D ACSA method.
Revision shoulder arthroplasty is increasing with the number of primary shoulder replacements rising globally. Complex primary and revisions of shoulder arthroplasties pose specific challenges for the surgeon, which must be addressed preoperatively and intraoperatively. This article aimed to present strategies for the management of revision of shoulder arthroplasties through a single-stage approach. Preoperatively, patient factors, such as age, comorbidities, and bone quality, should be considered. The use of planning software can aid in accurately evaluating implants in situ and predict bony anatomy that will remain after explantation during the revision surgery. The planning from such software can then be executed with the help of mixed reality technology to allow accurate implant placement. Single-stage revision is performed in two steps (debridement as first step, implantation and reconstruction as the second step), guided by the following principles: adequate debridement while preserving key soft tissue attachments (i.e., rotator cuff, pectoralis major, latissimus dorsi, deltoid), restoration of glenoid joint line using bone grafting, restoration of humeral length, reconstruction and/or reattachment of soft tissues, and strict compliance with the postoperative antibiotic regimen. Preliminary results of single-stage revision shoulder arthroplasty show improvement in patient outcomes (mean 1 year), successful treatment of infection for those diagnosed with periprosthetic joint infection, and improved cost–benefit parameters for the healthcare system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.