The ability of skin to act as a barrier is primarily determined by cells that maintain the continuity and integrity of skin and restore it after injury. Cutaneous wound healing in adult mammals is a complex multi-step process that involves overlapping stages of blood clot formation, inflammation, re-epithelialization, granulation tissue formation, neovascularization, and remodeling. Under favorable conditions, epidermal regeneration begins within hours after injury and takes several days until the epithelial surface is intact due to reorganization of the basement membrane. Regeneration relies on numerous signaling cues and on multiple cellular processes that take place both within the epidermis and in other participating tissues. A variety of modulators are involved, including growth factors, cytokines, matrix metalloproteinases, cellular receptors, and extracellular matrix components. Here we focus on the involvement of the extracellular matrix proteins that impact epidermal regeneration during wound healing.
Syndecans are transmembrane receptors with ectodomains that are modified by glycosaminoglycan chains. The ectodomains can interact with a wide variety of molecules, including growth factors, cytokines, proteinases, adhesion receptors, and extracellular matrix (ECM) components. The four syndecans in mammals are expressed in a development-, cell-type-, and tissue-specific manner and can function either as co-receptors with other cell surface receptors or as independent adhesion receptors that mediate cell signaling. They help regulate cell proliferation and migration, angiogenesis, cell/cell and cell/ECM adhesion, and they may participate in several key tumorigenesis processes. In some cancers, syndecan expression regulates tumor cell proliferation, adhesion, motility, and other functions, and may be a prognostic marker for tumor progression and patient survival. The short cytoplasmic tail is likely to be involved in these events through recruitment of signaling partners. In particular, the conserved carboxyl-terminal EFYA tetrapeptide sequence that is present in all syndecans binds to some PDZ domain-containing proteins that may function as scaffold proteins that recruit signaling and cytoskeletal proteins to the plasma membrane. There is growing interest in understanding these interactions at both the structural and biological levels, and recent findings show their high degree of complexity. Parameters that influence the recruitment of PDZ domain proteins by syndecans, such as binding specificity and affinity, are the focus of active investigations and are important for understanding regulatory mechanisms. Recent studies show that binding may be affected by post-translational events that influence regulatory mechanisms, such as phosphorylation within the syndecan cytoplasmic tail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.