Multidrug ABC transporters translocate drugs across membranes by a mechanism for which the molecular features of drug release are so far unknown. Here, we resolved three ATP-Mg
2+
–bound outward-facing conformations of the
Bacillus subtilis
(homodimeric) BmrA by x-ray crystallography and single-particle cryo–electron microscopy (EM) in detergent solution, one of them with rhodamine 6G (R6G), a substrate exported by BmrA when overexpressed in
B. subtilis
. Two R6G molecules bind to the drug-binding cavity at the level of the outer leaflet, between transmembrane (TM) helices 1–2 of one monomer and TM5′–6′ of the other. They induce a rearrangement of TM1–2, highlighting a local flexibility that we confirmed by hydrogen/deuterium exchange and molecular dynamics simulations. In the absence of R6G, simulations show a fast postrelease occlusion of the cavity driven by hydrophobicity, while when present, R6G can move within the cavity, maintaining it open.
The natural β-carboline alkaloids display similarities with neurotransmitters that can be favorably exploited to design bioactive and bioavailable drugs for Alzheimer's disease (AD) therapy. Several AD targets are currently and intensively being investigated, divided in different hypotheses: mainly the cholinergic, the amyloid β (Aβ), and the Tau hypotheses. To date, only symptomatic treatments are available involving acetylcholinesterase and NMDA inhibitors. On the basis of plethoric single-target structure−activity relationship studies, the β-carboline scaffold was identified as a powerful tool for fostering activity and molecular interactions with a wide range of AD-related targets. This knowledge can undoubtedly be used to design multitarget-directed ligands, a highly relevant strategy preferred in the context of multifactorial pathology with intricate etiology such as AD. In this review, we first individually discuss the AD targets of the β-carbolines, and then we focus on the multitarget strategies dedicated to the deliberate design of new efficient scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.