Adult skeletal muscle has the unique capacity to regenerate. Muscle regeneration is always associated with inflammation and notably macrophages (MPs), which play dual role. Soon after injury, inflammatory monocyte‐derived macrophages (M1 phenotype) stimulate myogenic cell proliferation. After phagocytosis of muscle debris, MPs switch their phenotype to acquire an anti‐inflammatory profile (M2) and stimulate myogenic cell differentiation and myofibre growth. Here, we explored the role of AMPK in the resolution of inflammation during muscle repair.
AMPKα1 KO muscle shows both a delay and an impairment of post‐injury regeneration. These deficiencies are also observed in LysM‐CRE;AMPKfl/fl muscle, confirming the MP specificity of AMPK requirement. In vitro, AMPKα1 KO MPs hardly acquire a M2 profile upon cytokine stimulation. Their phagocytic activity is also altered. In vivo analysis of MP subpopulations (using the AMPKα1−/−;CX3CR1GFP/+ mouse) during muscle repair shows that the number of intramuscular MPs exhibiting the M2 phenotype is reduced in the AMPKα1 KO compared to the WT mouse. Accordingly, leukocytes from AMPKα1 KO muscle do not increase their expression of markers associated with the resolution of inflammation during muscle regeneration.
These results strongly support that AMPKα1 is one key regulator of MP switch at time of resolution of inflammation and is essential for a proper muscle repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.