Abstract. The design of the icosahedral dynamical core DY-NAMICO is presented. DYNAMICO solves the multi-layer rotating shallow-water equations, a compressible variant of the same equivalent to a discretization of the hydrostatic primitive equations in a Lagrangian vertical coordinate, and the primitive equations in a hybrid mass-based vertical coordinate. The common Hamiltonian structure of these sets of equations is exploited to formulate energy-conserving spatial discretizations in a unified way.The horizontal mesh is a quasi-uniform icosahedral C-grid obtained by subdivision of a regular icosahedron. Control volumes for mass, tracers and entropy/potential temperature are the hexagonal cells of the Voronoi mesh to avoid the fast numerical modes of the triangular C-grid. The horizontal discretization is that of Ringler et al. (2010), whose discrete quasi-Hamiltonian structure is identified. The prognostic variables are arranged vertically on a Lorenz grid with all thermodynamical variables collocated with mass. The vertical discretization is obtained from the three-dimensional Hamiltonian formulation. Tracers are transported using a second-order finite-volume scheme with slope limiting for positivity. Explicit Runge-Kutta time integration is used for dynamics, and forward-in-time integration with horizontal/vertical splitting is used for tracers. Most of the model code is common to the three sets of equations solved, making it easier to develop and validate each piece of the model separately.Representative three-dimensional test cases are run and analyzed, showing correctness of the model. The design permits to consider several extensions in the near future, from higher-order transport to more general dynamics, especially deep-atmosphere and non-hydrostatic equations.
Shallow‐atmosphere equations retaining both the vertical and horizontal components of the Coriolis force (the latter being neglected in the traditional approximation) are obtained. The derivation invokes Hamilton's principle of least action with an approximate Lagrangian capturing the small increase with height of the solid‐body velocity due to planetary rotation. The conservation of energy, angular momentum and Ertel's potential vorticity are ensured in both quasi‐ and non‐hydrostatic systems.
The curl form of equations of inviscid atmospheric motion in general non-Eulerian coordinates is obtained. Narrowing down to a general vertical coordinate, a quasi-Hamiltonian form is then obtained in a Lagrangian, isentropic, mass-based or z-based vertical coordinate. In non-Lagrangian vertical coordinates, the conservation of energy by the vertical transport terms results from the invariance of energy under the vertical relabeling of fluid parcels. A complete or partial separation between the horizontal and vertical dynamics is achieved, except in the Eulerian case. The horizontal–vertical separation is especially helpful for (quasi-)hydrostatic systems characterized by vanishing vertical momentum. Indeed for such systems vertical momentum balance reduces to a simple statement: total energy is stationary with respect to adiabatic vertical displacements of fluid parcels. From this point of view the purpose of (quasi-)hydrostatic balance is to determine the vertical positions of fluid parcels, for which no evolution equation is readily available. This physically appealing formulation significantly extends previous work. The general formalism is exemplified for the fully compressible Euler equations in a Lagrangian vertical coordinate and a Cartesian (x, z) slice geometry, and the deep-atmosphere quasi-hydrostatic equations in latitude–longitude horizontal coordinates. The latter case, in particular, illuminates how the apparent intricacy of the time-dependent metric terms and of the additional forces can be absorbed into a proper choice of prognostic variables. In both cases it is shown how the quasi-Hamiltonian form leads straightforwardly to the conservation of energy using only integration by parts. Relationships with previous work and implications for stability analysis and the derivation of approximate sets of equations and energy-conserving numerical schemes are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.