Brain plasticity can be conceptualized as nature’s invention to overcome limitations of the genome and adapt to a rapidly changing environment. As such, plasticity is an intrinsic property of the brain across the life-span. However, mechanisms of plasticity may vary with age. The combination of transcranial magnetic stimulation (TMS) with electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) enables clinicians and researchers to directly study local and network cortical plasticity, in humans in vivo, and characterize their changes across the age-span. Parallel, translational studies in animals can provide mechanistic insights. Here, we argue that, for each individual, the efficiency of neuronal plasticity declines throughout the age-span and may do so more or less prominently depending on variable ‘starting-points’ and different ‘slopes of change’ defined by genetic, biological, and environmental factors. Furthermore, aberrant, excessive, insufficient, or mistimed plasticity may represent the proximal pathogenic cause of neurodevelopmental and neurodegenerative disorders such as autism spectrum disorders or Alzheimer’s disease.
Deterioration of motor and cognitive performance with advancing age is well documented, but its cause remains unknown. Animal studies dating back to the late 1970s reveal that age-associated neurocognitive changes are linked to age-dependent changes in synaptic plasticity, including alterations of long-term potentiation and depression (LTP and LTD). Non-invasive brain stimulation techniques enable measurement of LTP- and LTD-like mechanisms of plasticity, in vivo, in humans, and may thus provide valuable insights. We examined the effects of a 40-s train of continuous theta-burst stimulation (cTBS) to the motor cortex (600 stimuli, three pulses at 50 Hz applied at a frequency of 5 Hz) on cortico-spinal excitability as measured by the motor evoked potentials (MEPs) induced by single-pulse transcranial magnetic stimulation before and after cTBS in the contralateral first dorsal interosseus muscle. Thirty-six healthy individuals aged 19–81 years old were studied in two sites (Boston, USA and Barcelona, Spain). The findings did not differ across study sites. We found that advancing age is negatively correlated with the duration of the effect of cTBS (r = −0.367; p = 0.028) and the overall amount of corticomotor suppression induced by cTBS (r = −0.478; p = 0.003), and positively correlated with the maximal suppression of amplitude on motor evoked responses in the target muscle (r = 0.420; p = 0.011). We performed magnetic resonance imaging (MRI)-based individual morphometric analysis in a subset of subjects to demonstrate that these findings are not explained by age-related brain atrophy or differences in scalp-to-brain distance that could have affected the TBS effects. Our findings provide empirical evidence that the mechanisms of cortical plasticity area are altered with aging and their efficiency decreases across the human lifespan. This may critically contribute to motor and possibly cognitive decline.
The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.