Buildings’ construction and operation are major contributors to global greenhouse gas (GHG) emissions, and the substantial reduction of GHG emissions across their full life cycle is required to enable meeting international climate targets. For effective climate change mitigation - as recent studies have shown - a special focus has to be put on lowering embodied GHG emissions, i.e., emissions related to construction production manufacturing and construction processes, maintenance and replacement as well as end-of-life processing. As the importance of reducing embodied GHG emissions rises, so does the need for understanding both the baseline and pathways for reduction across the full life cycle of buildings. In this paper, we offer insights into the data-driven analysis of embodied GHG emissions across the whole life cycle of buildings from recent studies. Our investigation builds on the data collection, processing and harmonisation of around 1.000 building LCA case studies. We offer an integrated perspective on GHG emissions across the life cycle of buildings, considering historical trends, current baselines and indicative reduction pathways for embodied GHG emissions in different countries across Europe. This serves to inform our current ‘decade of action’ and the transformation to a regenerative built environment by 2050.
Environmental performances assessment of urban projects is essential to meet the current challenges of urban sustainable development. In recent years, Life Cycle Assessment (LCA) has been applied to urban scale to assess complex systems such as districts, urban facilities and territories. Yet, application of LCA to large scale is challenging in terms of data modelling. To overcome this challenge, integration of Building Information Model (BIM) to LCA could reduce efforts during the data acquisition, as well as allowing the feedback of LCA results into BIM. To ensure interoperability e.g. with energy simulation tools, digital mock-up using an open information standard must be preferred. To answer this need, the Open Geospatial Consortium (OGC) developed the open standard CityGML which is an XML-based data model that defines classes and relations for 3D object in cities (e.g. buildings, roads, water bodies etc.). This format also provides for domain-specific extension to other objects or attributes using Application Domain Extensions (ADE). To date, LCA data requirements have not been fully integrated into the CityGML format nor its ADE. The aim of this paper is to propose extension of CityGML and Energy-ADE standards for exchanging information for LCA simulation at urban scale. The scope of the study is limited to the integration of information necessary for LCA of buildings' construction and renovation. First, data requirements are listed and then compared to CityGML and Energy-ADE
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.