IntroductionThere is a growing body of evidence that subtle deficits in instrumental activities of daily living (IADL) may be present in mild cognitive impairment (MCI). However, it is not clear if there are IADL domains that are consistently affected across patients with MCI. In this systematic review, therefore, we aimed to summarize research results regarding the performance of MCI patients in specific IADL (sub)domains compared with persons who are cognitively normal and/or patients with dementia.MethodsThe databases PsycINFO, PubMed and Web of Science were searched for relevant literature in December 2013. Publications from 1999 onward were considered for inclusion. Altogether, 497 articles were retrieved. Reference lists of selected articles were searched for potentially relevant articles. After screening the abstracts of these 497 articles, 37 articles were included in this review.ResultsIn 35 studies, IADL deficits (such as problems with medication intake, telephone use, keeping appointments, finding things at home and using everyday technology) were documented in patients with MCI. Financial capacity in patients with MCI was affected in the majority of studies. Effect sizes for group differences between patients with MCI and healthy controls were predominantly moderate to large. Performance-based instruments showed slight advantages (in terms of effect sizes) in detecting group differences in IADL functioning between patients with MCI, patients with Alzheimer’s disease and healthy controls.ConclusionIADL requiring higher neuropsychological functioning seem to be most severely affected in patients with MCI. A reliable identification of such deficits is necessary, as patients with MCI with IADL deficits seem to have a higher risk of converting to dementia than patients with MCI without IADL deficits. The use of assessment tools specifically designed and validated for patients with MCI is therefore strongly recommended. Furthermore, the development of performance-based assessment instruments should be intensified, as they allow a valid and reliable assessment of subtle IADL deficits in MCI, even if a proxy is not available. Another important point to consider when designing new scales is the inclusion of technology-associated IADL. Novel instruments for clinical practice should be time-efficient and easy to administer.
ECT is effective and well tolerated in geriatric depressed inpatients regardless of preexisting cognitive impairment. Cognitive deficits were transient.
Background/Aims: To identify prodromal Alzheimer's disease (AD) subjects using a data-driven approach to determine cognitive profiles in mild cognitive impairment (MCI). Methods: A total of 881 MCI subjects were recruited from 20 memory clinics and followed for up to 5 years. Outcome measures included cognitive variables, conversion to AD, and biomarkers (e.g. CSF, and MRI markers). Two hierarchical cluster analyses (HCA) were performed to identify clusters of subjects with distinct cognitive profiles. The first HCA included all subjects with complete cognitive data, whereas the second one selected subjects with very mild MCI (MMSE ≥28). ANOVAs and ANCOVAs were computed to examine whether the clusters differed with regard to conversion to AD, and to AD-specific biomarkers. Results: The HCAs identified 4-cluster solutions that best reflected the sample structure. One cluster (aMCIsingle) had a significantly higher conversion rate (19%), compared to subjective cognitive impairment (SCI, p < 0.0001), and non-amnestic MCI (naMCI, p = 0.012). This cluster was the only one showing a significantly different biomarker profile (Aβ42, t-tau, APOE ε4, and medial temporal atrophy), compared to SCI or naMCI. Conclusion: In subjects with mild MCI, the single-domain amnestic MCI profile was associated with the highest risk of conversion, even if memory impairment did not necessarily cross specific cut-off points. A cognitive profile characterized by isolated memory deficits may be sufficient to warrant applying prevention strategies in MCI, whether or not memory performance lies below specific z-scores. This is supported by our preliminary biomarker analyses. However, further analyses with bigger samples are needed to corroborate these findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.